Announcements

Assignments:

= HW2 (written)
= Due Tuesday 9/12, 10pm

= P1:Search
= Due Monday 9/18, 10pm
= Working in pairs is suggested but not required

Polls
= Don’t worry if you miss a few
= Talk to us if you are systematically missing polls

Announcements

Recitation
" Join any recitation you want this week

= Stay tuned to Piazza for post about informally changing section

More coming on Piazza

= Recitation change form (probably end of next week)

Al: Representation and Problem Solving

Adversarial Search

Instructors: Vincent Conitzer and Aditi Raghunathan
Slide credits: CMU Al, http://ai.berkeley.edu

Outline

History / Overview

Zero-Sum Games (Minimax)
Evaluation Functions

Search Efficiency (a-B Pruning)

Games of Chance (Expectimax)

Game Playing State-of-the-Art

Checkers:

1950: First computer player.
1959: Samuel’s self-taught program.

1994: First computer world champion: Chinook ended 40-year-reign
of human champion Marion Tinsley using complete 8-piece
endgame.

2007: Checkers solved! Endgame database of 39 trillion states

Chess:

1945-1960: Zuse, Wiener, Shannon, Turing, Newell & Simon,
McCarthy.

1960s onward: gradual improvement under “standard mode

1997: special-purpose chess machine Deep Blue defeats human
champion Gary Kasparov in a six-game match. Deep Blue examined
200M positions per second and extended some lines of search up to
40 ply. Current programs running on a PC rate > 3200 (vs 2870 for
Magnus Carlsen).

III

Go:

1968: Zobrist’s program plays legal Go, barely (b>300!)

2005-2014: Monte Carlo tree search enables rapid advances: current
programs beat strong amateurs, and professionals with a 3-4 stone
handicap.

2015: AlphaGo from DeepMind beats Lee Sedol

SoLVED! +

ERPERY +

HUWMAN -1

ABR\CK =

Checkers

Chess

FPacman.

Types of Games

Many different kinds of games!

Axes:

= Deterministic or stochastic?

= Perfect information (fully observable)?
= One, two, or more players?

I ——

" Turn-taking or simultaneous?
= Zerosum?

Want algorithms for calculating a contingent plan (a.k.a. strategy or policy)
which recommends a move for every possible eventuality

/ero-Sum Games

= Two-Player Zero-Sum Games " General Games
= Agents have opposite utilities = Agents have independent utilities
" Pure competjtion: » Cooperation, indifference,
» One maximizes, the other minimizes competition, shifting alliances, and

more are all possible

“Standard” Games

Standard games are deterministic, observable,
two-player, turn-taking, zero-sum

Game formulation:
" |nitial state: s,
» Players: Player(s) indicates whose move it is
= Actions: Actions(s) for player on move
=" Transition model: Result(s,a)
=" Terminal test: Terminal-Test(s)
= Terminal values: Utility(s,p) for player p
= Or just Utility(s) for player making the decision at root

Adversarial Search

Single-Agent Trees

€
/\

T T~ T~
O B B

Minimax

States
Actions
Values

Bl -~
/\ /\

Minimax

States MAX ()
Actions / \
X X X
Values MIN (O) X X X
X X X
x]o x| Jo] [x
MAX (X) o
x[o[x| [x[o X[o
MIN (O) X X
|
X 0|X X 0| X X0 X
TERMINAL 0| X 00X X
o] X| X|O X 0|0
Utility -1 0 +1

Minimax Code

def max_value(state):
if state.is_leaf:
return state.value
TODO Also handle depth limit
best value = -10000000

for action in state.actions:
next_state = state.result(action)

next value = min_value(next_state)

it next_value > best value:
best value = next_value

return best_value

def min value(state):

Poll 1 (+ worksheet Poll 2 and 3 for Qla/b)

What is the minimax value at the root?
A) 2
B) 3

Poll 1

What is the minimax value at the root?

B) 3

Minimax Notation

def max_value(state):

_ /
if state.is_leaf: V(S) T mcilX V(S)r
return state.value

r __
TODO Also handle depth limit where ' = result(s, a)
best value = -10000000

for action in state.actions:
next_state = state.result(action)

next value = min_value(next_state)

it next_value > best value:
best value = next_value

return best_value

def min value(state):

Minimax Notation

V(s) = max V(s),
a
where s’ = result(s, a)

d = argmax V(s'),
a
where s’ = result(s, a)

Generic Game Tree Pseudocode

function minimax_decision(state)

return argmax i, ctate.actions vValue(state.result(a))

function value(state)
if state.is leaf
return state.value

if state.player is MAX
return Max . i, ctate actions Value(state.result(a))

if state.player is MIN
return min . ciate actions Value(state.result(a))

Generalized minimax (better name: backward induction)

What if the game is not zero-sum, or has multiple players?

Generalization of minimax:

Terminals have utility tuples

Node values are also utility tuples

Each player maximizes its own component
Can give rise to cooperation and
competition dynamically...

El 8,8,1
[} 8,381 7,7,2
0,0,7 , 48,1 7,7,2 0,0,8
007 |[990]|881]]|990]||772]]008]|007

Minimax Efficiency

How efficient is minimax?
= Just like (exhaustive) DFS

= Time: O(b™)

= Space: O(bm)

Example: For chess, b = 35, m = 100 \1
= Exact solution is completely infeasible)
= Humans can’t do this either, so how do a®

we play chess?
= Bounded rationality — Herbert Simon
)

Resource Limits

Resource Limits

Problem: In realistic games, cannot search to leaves!

Solution 1: Bounded lookahead
= Search only to a preset depth limit or horizon
= Use an evaluation function for non-terminal positions

Guarantee of optimal play is gone

More plies make a BIG difference

Example:

= Suppose we have 100 seconds, can explore 10K nodes / sec
= So can check 1M nodes per move

= For chess, b="35 so reaches about depth 4 — not so good

Depth Matters

Evaluation functions are always imperfect
Deeper search => better play (usually)

Or, deeper search gives same quality of
play with a less accurate evaluation
function

An important example of the tradeoff
between complexity of features and
complexity of computation

—adithe

2

Evaluation Functions

Evaluation Functions

Evaluation functions score non-terminals in depth-limited search

Black to move White to move

White slightly better Black winning

ldeal function: returns the actual minimax value of the position

In practice: typically weighted linear sum of features:

" EVAL(S) = Wy £(s) + Wy fols) + oo + W, £3(5)
" E.g.,w; =9, f,(s) = (hum white queens — num black queens), etc.

Evaluation for Pacman

Game Tree Pruning

Minimax Example

Alpha-Beta Example

o = best option so far from any
MAX node on this path

The order of generation matters: more pruning
is possible if good moves come first

Alpha-Beta Implementation

a: MAX’s best option on path to root
B: MIN’s best option on path to root

def max-value(state, a, B): def min-value(state , a, B):
initialize v = -0 initialize v = +oo
for each successor of state: for each successor of state:
v = max(v, value(successor, a, B)) v = min(v, value(successor, a,))
ifv>P if v<a
return v return v
a = max(a, v) B =min(B, v)

return v return v

On your own

Which branches are pruned?
(Left to right traversal)
(Select all that apply)

Poll 4

Which branches are pruned?
(Left to right traversal)

A) e,
B) g,

C)g Kk, |
D) g, n

1

/S

/N

100

8

'/

"/

3

20

N

Poll 4

Alpha-Beta Code

a: MAX’s best option on path to root
B: MIN’s best option on path to root

def max-value(state, a, B):

initialize v = -0

for each successor of state:
v = max(v, value(successor, a, 3))
ifv>

returnv

o = max(a, v)

return v

Alpha-Beta Code

o=10
AN
10

b &

10 100
AN fg

10

6

h

sz‘?{p

100

8

a: MAX’s best option on path to root
B: MIN’s best option on path to root

def min-value(state, a, B):
initialize v = +oo
for each successor of state:
v = min(v, value(successor, a, 3))
ifvsa
returnv
B =min(B, v)

return v

Alpha-Beta Pruning Properties

Theorem: This pruning has no effect on minimax value computed for the root!

Good child ordering improves effectiveness of pruning
" |[terative deepening helps with this

With “perfect ordering”:

* Time complexity drops to O(b™/2)

= Doubles solvable depth!

= 1M nodes/move => depth=8, respectable

This is a simple example of metareasoning (computing about what to compute)

10

max

min

10

Modeling Assumptions

Know your opponent

- —— -

.

O
O

e e—

10

10

100

Modeling Assumptions

Know your opponent

10 10 9 100

Modeling Assumptions

Dangerous Pessimism Dangerous Optimism
Assuming the worst case when it’s not likely Assuming chance when the world is adversarial

Chance outcomes in trees

10| |10 9 100 10| |10 9 100
Tictactoe, chess Tetris, investing
10 9

Minimax Expectimax 10| 9 10 (100

Backgammon, Monopoly
Expectiminimax

Probabilities

Probabilities

A random variable represents an event whose outcome
is unknown

0.25

A probability distribution is an assignment of weights
to outcomes

0.50

Example: Traffic on freeway
= Random variable: T = whether there’s traffic
= Qutcomes: T in {none, light, heavy}
= Distribution:
P(T=none) = 0.25, P(T=light) = 0.50, P(T=heavy) =0.25

Probabilities over all possible outcomes sum to one

Expected Value

Expected value of a function of a random variable:
Average the values of each outcome,
weighted by the probability of that outcome

Example: How long to get to the airport?

Time: 20 min 30 min 60 min
X + X + X 35 min
Probability: : 0.50 0.25

Expectations

Time: 20 min 30 min
X + X
Probability: 0.25 0.50

Max node notation Chance node notation

V(s) = max V(sh, V(s) =

where s’ = result(s, a)

Expectations

Time: 20 min 30 min
X + X
Probability: 0.25 0.50

Max node notation Chance node notation
V(s) = max V(s'), V(s) = z P(s")V(s)
a
S/

where s’ = result(s, a)

On your own...

Expectimax tree search:

Which action do we

choose?

A: Left

B: Center
C: Right
D: Eight

1/4

12

1/4

v
8

Left

Center

Right

1/3

12

On your own...

Expectimax tree search:
Which action do we
choose? Left

3+2+2=7

C: Right

1/4 1/2

1/4

o0 |«

12

Center

4+3=7

1/2

Right

A4+4=8

1/3

12

2/3

Expectimax Code

function value(state)
if state.is leaf
return state.value

if state.player is MAX
return Max . i, ctate actions Value(state.result(a))

if state.player is MIN
return min . ctate actions Value(state.result(a))

if state.player is CHANCE
return sum S in state.next_states P(S) * Value(S)

Expectimax Pruning?

Modeling Assumptions

Minimax Random
Ghost Ghost
Minimax
Pacman
Expectimax
Pacman

Results from playing 5 games

Activity sheet

Qlc — practice alpha-beta pruning on your own

Q2 — apply minimax and evaluation functions (heuristics) to Connect 4

summary

Games require decisions when optimality is impossible
" Bounded-depth search and approximate evaluation functions

Games force efficient use of computation
* Alpha-beta pruning

Game playing has produced important research ideas

= Reinforcement learning (checkers)

" [terative deepening (chess)

= Monte Carlo tree search (Go)

= Solution methods for partial-information games in economics (poker)

Video games present much greater challenges — lots to do!
= b =105 |S|=10%% m =10,000

Preview: MDP/Reinforcement Learning Notation

V(is) = méiXE P(s"V(s"

Preview: MDP/Reinforcement Learning Notation

Standard expectimax: V(s) = maxz P(s'|s,a)V(s")
a =
Bellman equations: V(s) = maxz P(s'|s,a)[R(s,a,s") + yV(s')]
a =
Value iteration: Vi+1(s) = maxz P(s'ls,a)[R(s,a,s") +yVi(s)], Vs
a =
Q-iteration: Qi+1(s,a) = Z P(s'|s,a)[R(s,a,s") + ymax Qi (s’,a")], Vs,a
S/ 4
Policy extraction: my(s) = argmaxz P(s'|s,a)[R(s,a,s") +yV(s')], Vs
a S/
Policy evaluation: Vi .(s) = Z P(s'|s,m(s))[R(s,m(s),s") + yVF(s")], Vs
S/

Policy improvement: Tpew(S) = argmaxz P(s'|s,a)[R(s,a,s") + yVToud(s")], Vs
a
S/

Preview: MDP/Reinforcement Learning Notation

Standard expectimax: V(s) = maxz: P(s'|s,a)V(s")
a =
Bellman equations: V(s) = maxz: P(s'|s,a)[R(s,a,s") + yV(s")]
a =
Value iteration: Vis1(s) = maxz P(s'ls,a)[R(s,a,s") +yVi(s))], Vs
a =
Q-iteration: Qr+1(s,a) = z P(s'|s,a)[R(s,a,s") + ymax Q,(s’,a")], Vs,a
a
S/
Policy extraction: my(s) = argmaxz P(s'|s,a)[R(s,a,s") + yV(s')], Vs
a S/
Policy evaluation: Vi ,(s) = z P(s'|s,m(s))[R(s,m(s),s") + yVF(s")], Vs
Y

Policy improvement: Tnew(S) = argmaxz P(s'|s,a)[R(s,a,s") +yV™olda(s")], Vs
a
S/

Why Expectimax?

Pretty great model for an agent in the world
Choose the action that has the: highest expected value

Bonus Question

Let’s say you know that your opponent is actually running a depth 1
minimax, using the result 80% of the time, and moving randomly

otherwise

Question: What tree search should you use?
A: Minimax

B: Expectimax

C: Something completely different

	Slide 1: Announcements
	Slide 2: Announcements
	Slide 3: AI: Representation and Problem Solving
	Slide 4: Outline
	Slide 5: Game Playing State-of-the-Art
	Slide 6: Types of Games
	Slide 7: Zero-Sum Games
	Slide 8: “Standard” Games
	Slide 9: Adversarial Search
	Slide 10: Single-Agent Trees
	Slide 11: Minimax
	Slide 12: Minimax
	Slide 13: Minimax Code
	Slide 14: Poll 1 (+ worksheet Poll 2 and 3 for Q1a/b)
	Slide 15: Poll 1
	Slide 16: Minimax Notation
	Slide 17: Minimax Notation
	Slide 18: Generic Game Tree Pseudocode
	Slide 19: Generalized minimax (better name: backward induction)
	Slide 20: Minimax Efficiency
	Slide 21: Resource Limits
	Slide 22: Resource Limits
	Slide 23: Depth Matters
	Slide 24: Evaluation Functions
	Slide 25: Evaluation Functions
	Slide 26: Evaluation for Pacman
	Slide 27: Game Tree Pruning
	Slide 28: Minimax Example
	Slide 29: Alpha-Beta Example
	Slide 30: Alpha-Beta Implementation
	Slide 31: On your own
	Slide 32: Poll 4
	Slide 33: Poll 4
	Slide 34: Alpha-Beta Code
	Slide 35: Alpha-Beta Code
	Slide 36: Alpha-Beta Pruning Properties
	Slide 37: Modeling Assumptions
	Slide 38: Modeling Assumptions
	Slide 39: Modeling Assumptions
	Slide 40: Chance outcomes in trees
	Slide 41: Probabilities
	Slide 42: Probabilities
	Slide 43: Expected Value
	Slide 44: Expectations
	Slide 45: Expectations
	Slide 46: On your own…
	Slide 47: On your own…
	Slide 48: Expectimax Code
	Slide 49: Expectimax Pruning?
	Slide 50: Modeling Assumptions
	Slide 51: Activity sheet
	Slide 52: Summary
	Slide 53: Preview: MDP/Reinforcement Learning Notation
	Slide 54: Preview: MDP/Reinforcement Learning Notation
	Slide 55: Preview: MDP/Reinforcement Learning Notation
	Slide 56: Why Expectimax?
	Slide 57: Bonus Question

