
Warm-up as You Walk In (also see activity sheet on website)

2

1

3

4

1

Assign Red, Green, or Blue to each node
Neighbors must be different

Sudoku

1) What is your brain doing to solve these?
2) How would you solve these with search (BFS, DFS, etc.)?

1

Announcements
Assignments:

▪ HW2 (written)

▪ Due tonight (9/12), 10 pm

▪ HW3 (online)

▪ Out tonight (9/12), due 9/19 at 10 pm

▪ P1: Search and Games

▪ Due Monday (9/18), 10 pm (NOTE THE CLOSE DEADLINES)

▪ Recommended to work in pairs

▪ Submit to Gradescope early and as often as you like

▪ Don’t submit separately; Enter your partner’s name when submitting

Plan
Last Time

▪ Adversarial search

▪ Minimax

▪ Evaluation functions

▪ Pruning

▪ Expectimax (actually no, didn’t finish that, we’ll quickly do this
now)

Today

▪ Constraint Satisfaction Problems

AI: Representation and Problem Solving
Constraint Satisfaction Problems (CSPs)

Instructor: Vincent Conitzer and Aditi Raghunathan

Slide credits: CMU AI, http://ai.berkeley.edu
4

What is Search For?

• Planning: sequences of actions
• The path to the goal is the important thing

• Paths have various costs, depths

• Heuristics give problem-specific guidance

• Identification: assignments to variables
• The goal itself is important, not the path

• All paths at the same depth (for some formulations)

Are the warm-up assignments (i.e., sudoku)
planning or identification problems?

5

Constraint Satisfaction Problems

CSP is a special class of search problems
▪ Mostly identification problems
▪ Have specialized algorithms for them

Standard search problems:
▪ State is an arbitrary data structure
▪ Goal test can be any function over states

Constraint satisfaction problems (CSPs):
▪ State is defined by variables Xi with values from a

domain D (sometimes D depends on i)
▪ Goal test is a set of constraints specifying allowable

combinations of values for subsets of variables

6

Why study CSPs?

▪ Assignment problems: e.g., who teaches what class

▪ Timetabling problems: e.g., which class is offered when and where?

▪ Hardware configuration

▪ Transportation scheduling

▪ Factory scheduling

▪ Circuit layout

▪ Fault diagnosis

▪ … lots more!

▪ Sometimes involve real-valued variables…

Many real-world problems can be formulated as CSPs

7

Varieties of CSPs and Constraints

8

Example: Map Coloring

• Variables:

• Domains:

• Constraints: adjacent regions must have different colors

• Solutions are assignments satisfying all constraints, e.g.:

Implicit:

Explicit:

9

Constraint Graphs

10

Constraint Graphs

▪ Binary CSP: each constraint relates (at most) two
variables

▪ Binary constraint graph: nodes are variables, arcs
show constraints

▪ General-purpose CSP algorithms use the graph
structure to speed up search. E.g., Tasmania is an
independent subproblem!

11

Example: N-Queens

• Formulation 1:
• Variables:

• Domains:

• Constraints

12

Example: N-Queens

• Formulation 2:
• Variables:

• Domains:

• Constraints:

Implicit:

Explicit:

13

Example: Cryptarithmetic

• Variables:

• Domains:

• Constraints:

14

Example: Sudoku

9-way alldiff for each row

9-way alldiff for each column

9-way alldiff for each region

(or can have a bunch
of pairwise inequality
constraints)

• Variables: Each (open) square

• Domains: {1,2,…,9}

• Constraints:

15

Varieties of CSPs

• Discrete Variables

• Finite domains

• Size d means O(dn) complete assignments

• E.g., Boolean CSPs, including Boolean satisfiability (NP-
complete)

• Infinite domains (integers, strings, etc.)

• E.g., job scheduling, variables are start/end times for each job

• Linear constraints solvable, nonlinear undecidable

• Continuous variables

• E.g., start/end times for Hubble Telescope observations

• Linear constraints solvable in polynomial time

We will cover today

We will cover in a later lecture (linear programming)

16

Varieties of Constraints

• Varieties of Constraints
• Unary constraints involve a single variable (equivalent

to reducing domains), e.g.:

• Binary constraints involve pairs of variables, e.g.:

• Higher-order constraints involve 3 or more variables:
 e.g., cryptarithmetic column constraints

Focus of today

• Preferences (soft constraints):
• E.g., red is better than green
• Often representable by a cost for each variable assignment
• Gives constrained optimization problems

17

Solving CSPs

18

Standard Search Formulation

• Standard search formulation of CSPs

• States defined by the values assigned
so far (partial assignments)
• Initial state: the empty assignment, {}
• Successor function: assign a value to an

unassigned variable
• Goal test: the current assignment is

complete and satisfies all constraints

• We’ll start with the straightforward,
naïve approach, then improve it

→Can be any unassigned variable

19

Question: Search for CSPs

Should we use BFS or DFS?

20

Depth First Search

• At each node, assign a value
from the domain to the
variable

• Check feasibility (constraints)
when the assignment is
complete

21

Demo – Naïve Search

22

Backtracking Search

23

Backtracking Search

• Backtracking search is the basic uninformed algorithm for solving CSPs

• Backtracking search = DFS + two improvements

• Idea 1: One variable at a time
• Variable assignments are commutative

• [WA = red then NT = green] same as [NT = green then WA = red]
• Only need to consider assign value to a single variable at each step

• Idea 2: Check constraints as you go
• Consider only values which do not conflict previous assignments
• May need some computation to check the constraints
• “Incremental goal test”

• Can solve n-queens for n 25 24

Backtracking Example

25

Backtracking Search

26

Backtracking Search

27

Backtracking Search

28

Backtracking Search

No need to check constraints for a complete assignment

29

Backtracking Search

Checks consistency at each assignment

30

Backtracking Search

• Backtracking = DFS + variable-ordering + fail-on-violation

• What are the decision points?
31

Improving Backtracking

• General-purpose ideas give huge gains in speed

• Filtering: Can we detect inevitable failure early?

• Ordering:
• Which variable should be assigned next?

• In what order should its values be tried?

• Structure: Can we exploit the problem structure?

32

Thursday

Today

Not going to cover!

Filtering

33

Filtering: Keep track of domains for unassigned variables and cross off
bad options

Forward checking: A simple way for filtering

• After a variable is assigned a value, check related constraints and
cross off values of unassigned variables which violate the
constraints

• Failure detected if some variables have no values remaining

Filtering: Forward Checking

34

• Filtering: Keep track of domains for unassigned variables and cross off bad options

• Forward checking: A simple way for filtering

• After a variable is assigned a value, check related constraints and cross off values of
unassigned variables which violate the constraints

• Failure detected if some variables have no values remaining

Filtering: Forward Checking

WA
SA

NT
Q

NSW

V

T

35

• Filtering: Keep track of domains for unassigned variables and cross off bad options

• Forward checking: A simple way for filtering

• After a variable is assigned a value, check related constraints and cross off values of
unassigned variables which violate the constraints

• Failure detected if some variables have no values remaining

Filtering: Forward Checking

Recall: Binary constraint graph for a binary CSP (i.e., each constraint has
most two variables): nodes are variables, edges show constraints 36

• Filtering: Keep track of domains for unassigned variables and cross off bad options

• Forward checking: A simple way for filtering

• After a variable is assigned a value, check related constraints and cross off values of
unassigned variables which violate the constraints

• Failure detected if some variables have no values remaining

Filtering: Forward Checking

37

• Filtering: Keep track of domains for unassigned variables and cross off bad options

• Forward checking: A simple way for filtering

• After a variable is assigned a value, check related constraints and cross off values of
unassigned variables which violate the constraints

• Failure detected if some variables have no values remaining

Filtering: Forward Checking

FAIL – variable with no possible values
38

Demo – Backtracking with Forward Checking

39

• Limitations of simple forward checking: propagates information from assigned to
unassigned variables, but doesn't provide early detection for all failures
• NT and SA cannot both be blue! Why didn’t we detect this yet?

• Constraint propagation: reason from constraint to constraint

Filtering: Constraint Propagation

40

Consistency of A Single Arc

• An arc X → Y is consistent iff for every x in the tail there is some y in the head which
could be assigned without violating a constraint

• Enforce arc consistency: Remove values in domain of X if no corresponding legal Y exists

• Forward checking: Only enforce 𝑋 → 𝑌, ∀ 𝑋, 𝑌 ∈ 𝐸 and 𝑌 newly assigned

(Remove values from the tail!)

Recall: Binary constraint graph for a binary CSP (i.e., each constraint has
most two variables): nodes are variables, edges show constraints 41

Consistency of A Single Arc

• An arc X → Y is consistent iff for every x in the tail there is some y in the head which
could be assigned without violating a constraint

• Enforce arc consistency: Remove values in domain of X if no corresponding legal Y exists

• Forward checking: Only enforce 𝑋 → 𝑌, ∀ 𝑋, 𝑌 ∈ 𝐸 and 𝑌 newly assigned

42

How to Enforce Arc Consistency of Entire CSP

• A simplistic algorithm: Cycle over the pairs of variables, enforcing arc-consistency,
repeating the cycle until no domains change for a whole cycle

• AC-3 (short for Arc Consistency Algorithm #3): A more efficient algorithm ignoring
constraints that have not been modified since they were last analyzed

WA
SA

NT
Q

NSW

V

T

43

AC-3: Enforce Arc Consistency of Entire CSP

Constraint Propagation!

44

AC-3: Enforce Arc Consistency of Entire CSP

Queue:
SA->WA
NT->WA

Remember: Delete from the tail!

WA
SA

NT
Q

NSW

V

T

45

AC-3: Enforce Arc Consistency of Entire CSP

Queue:
NT->WA
WA->SA
NT->SA
Q->SA
NSW->SA
V->SA

Remember: Delete from the tail!

WA
SA

NT
Q

NSW

V

T

46

AC-3: Enforce Arc Consistency of Entire CSP

Queue:
WA->SA
NT->SA
Q->SA
NSW->SA
V->SA
WA->NT
SA->NT
Q->NT

Remember: Delete from the tail!

WA
SA

NT
Q

NSW

V

T

47

AC-3: Enforce Arc Consistency of Entire CSP

Queue:
WA->SA
NT->SA
Q->SA
NSW->SA
V->SA
WA->NT
SA->NT
Q->NT

Remember: Delete from the tail!

WA
SA

NT
Q

NSW

V

T

48

AC-3: Enforce Arc Consistency of Entire CSP

Queue:
NT->SA
Q->SA
NSW->SA
V->SA
WA->NT
SA->NT
Q->NT

Remember: Delete from the tail!

WA
SA

NT
Q

NSW

V

T

49

AC-3: Enforce Arc Consistency of Entire CSP

Queue:
Q->SA
NSW->SA
V->SA
WA->NT
SA->NT
Q->NT

Remember: Delete from the tail!

WA
SA

NT
Q

NSW

V

T

50

AC-3: Enforce Arc Consistency of Entire CSP

Queue:
NSW->SA
V->SA
WA->NT
SA->NT
Q->NT

Remember: Delete from the tail!

WA
SA

NT
Q

NSW

V

T

51

AC-3: Enforce Arc Consistency of Entire CSP

Queue:

Remember: Delete from the tail!

WA
SA

NT
Q

NSW

V

T

52

Poll 1: After assigning Q to Green,
what gets added to the Queue?

A: NSW->Q, SA->Q, NT->Q
B: Q->NSW, Q->SA, Q->NT

Queue:

WA
SA

NT
Q

NSW

V

T

53

AC-3: Enforce Arc Consistency of Entire CSP

Queue:
NT->Q
SA->Q
NSW->Q

Remember: Delete from the tail!

WA
SA

NT
Q

NSW

V

T

54

AC-3: Enforce Arc Consistency of Entire CSP

Queue:
SA->Q
NSW->Q
WA->NT
SA->NT
Q->NT

Remember: Delete from the tail!

WA
SA

NT
Q

NSW

V

T

55

AC-3: Enforce Arc Consistency of Entire CSP

Queue:
NSW->Q
WA->NT
SA->NT
Q->NT
WA->SA
NT->SA
Q->SA
NSW->SA
V->SA

Remember: Delete from the tail!

WA
SA

NT
Q

NSW

V

T

56

AC-3: Enforce Arc Consistency of Entire CSP

Queue:
WA->NT
SA->NT
Q->NT
WA->SA
NT->SA
Q->SA
NSW->SA
V->SA
V->NSW
Q->NSW
SA->NSW

Remember: Delete from the tail!

WA
SA

NT
Q

NSW

V

T

57

AC-3: Enforce Arc Consistency of Entire CSP

Queue:
WA->NT
SA->NT
Q->NT
WA->SA
NT->SA
Q->SA
NSW->SA
V->SA
V->NSW
Q->NSW
SA->NSW

Remember: Delete from the tail!

WA
SA

NT
Q

NSW

V

T

58

AC-3: Enforce Arc Consistency of Entire CSP

Queue:
SA->NT
Q->NT
WA->SA
NT->SA
Q->SA
NSW->SA
V->SA
V->NSW
Q->NSW
SA->NSW

Remember: Delete from the tail!

!!!

WA
SA

NT
Q

NSW

V

T

59

• Backtrack on the assignment of Q

• Arc consistency detects failure earlier than forward checking

• Can be run as a preprocessor or after each assignment

• What’s the downside of enforcing arc consistency?

AC-3: Enforce Arc Consistency of Entire CSP

Queue:
SA->NT
Q->NT
WA->SA
NT->SA
Q->SA
NSW->SA
V->SA
V->NSW
Q->NSW
SA->NSW

Remember: Delete from the tail!

!!!

WA
SA

NT
Q

NSW

V

T

60

Limitations of Arc Consistency

• After enforcing arc consistency:
• Can have one solution left
• Can have multiple solutions left
• Can have no solutions left (and not

know it)

• Arc consistency only checks local
consistency conditions

• Arc consistency still runs inside a
backtracking search! What went

wrong here?

61

Backtracking Search with AC-3

• Where do you run AC-3?

AC-3(𝑐𝑠𝑝)

62

Demo – Backtracking with AC-3

63

Complexity of a single run of AC-3

Recall that the whole backtracking algorithm with AC-3 will call AC-3 many times 64

Complexity of a single run of AC-3

• An arc is added after a removal of
value at a node

• 𝑛 node in total, each has ≤ 𝑑 values
• Total times of removal: 𝑂 𝑛𝑑

65

Complexity of a single run of AC-3

• After a removal, ≤ 𝑛 arcs added
• Total times of adding arcs: 𝑂(𝑛2𝑑)

• An arc is added after a removal of
value at a node

• 𝑛 node in total, each has ≤ 𝑑 values
• Total times of removal: 𝑂 𝑛𝑑

66

Complexity of a single run of AC-3

• After a removal, ≤ 𝑛 arcs added
• Total times of adding arcs: 𝑂(𝑛2𝑑)

• An arc is added after a removal of
value at a node

• 𝑛 node in total, each has ≤ 𝑑 values
• Total times of removal: 𝑂 𝑛𝑑

• Check arc consistency per arc: 𝑂(𝑑2)

Complexity of a single run of AC-3 is at most 𝑂(𝑛2𝑑3)

(Not required) Zhang&Yap (2001) show that its complexity is 𝑂(𝑛2𝑑2)
67

Ordering

68

Backtracking Search

• Backtracking = DFS + variable-ordering + fail-on-violation

• What are the decision points?
69

Ordering: Minimum Remaining Values

• Variable Ordering: Minimum remaining values (MRV):
• Choose the variable with the fewest legal left values in its domain

• Why min rather than max?

• Also called “most constrained variable”

• “Fail-fast” ordering

70

Ordering: Least Constraining Value

• Value Ordering: Least Constraining Value
• Given a choice of variable, choose the least

constraining value

• i.e., the one that rules out the fewest values in
the remaining variables

• Note that it may take some computation to
determine this! (E.g., rerunning filtering)

71

Ordering: Least Constraining Value

• Value Ordering: Least Constraining Value
• Given a choice of variable, choose the least

constraining value
• i.e., the one that rules out the fewest values in

the remaining variables
• Note that it may take some computation to

determine this! (E.g., rerunning filtering)

• Why least rather than most?

• Combining these ordering ideas makes
 1000 queens feasible

72

Demo – Coloring with a Complex Graph

Compare
• Backtracking with Forward Checking
• Backtracking with AC-3
• Backtracking + Forward Checking +

Minimum Remaining Values (MRV)
• Backtracking + AC-3 + MRV + LCV

73

How to deal with non-binary CSPs?

• Variables:

• Domains:

• Constraints:

74

Constraint graph for non-binary CSPs

• Variable nodes: nodes to represent the variables

• Constraint nodes: auxiliary nodes to represent the constraints

• Edges: connects a constraint node and its corresponding variables

Constraints:

75

Solve non-binary CSPs

• Naïve search?
• Yes!

• Backtracking?
• Yes!

• Forward Checking?
• Need to generalize the original FC operation

• (nFC0) After a variable is assigned a value, find all constraints with only one
unassigned variable and cross off values of that unassigned variable which
violate the constraint

• There exist other ways to do generalized forward checking

76

Solve non-binary CSPs

• (Bonus material, not required)

• AC-3? Need to generalize the definition of AC and enforcement of AC

• Generalized arc-consistency (GAC)

• A non-binary constraint is GAC iff for every value for a variable there exist
consistent value combinations for all other variables in the constraint

• Reduced to AC for binary constraints

• Enforcing GAC

• Simple schema: enumerate value combination for all other variables

• O(𝑑𝑘) on 𝑘-ary constraint on variables with domains of size 𝑑

• There are other algorithms for non-binary constraint propagation, e.g., (i,j)-
consistency [Freuder, JACM 85]

77

Summary: CSPs

• CSPs are a special kind of search problem:
• States are partial assignments
• Goal test defined by constraints

• Basic solution: backtracking search

• Speed-ups:
• Ordering
• Filtering
• Structure

78

Additional Resources (Not required)

• References
• Zhang, Yuanlin, and Roland HC Yap. "Making AC-3 an optimal algorithm."

In IJCAI, vol. 1, pp. 316-321. 2001.

• Freuder, Eugene C. "A sufficient condition for backtrack-bounded
search." Journal of the ACM (JACM) 32, no. 4 (1985): 755-761.

79

	Slide 1: Warm-up as You Walk In (also see activity sheet on website)
	Slide 2: Announcements
	Slide 3: Plan
	Slide 4: AI: Representation and Problem Solving
	Slide 5: What is Search For?
	Slide 6: Constraint Satisfaction Problems
	Slide 7: Why study CSPs?
	Slide 8: Varieties of CSPs and Constraints
	Slide 9: Example: Map Coloring
	Slide 10: Constraint Graphs
	Slide 11: Constraint Graphs
	Slide 12: Example: N-Queens
	Slide 13: Example: N-Queens
	Slide 14: Example: Cryptarithmetic
	Slide 15: Example: Sudoku
	Slide 16: Varieties of CSPs
	Slide 17: Varieties of Constraints
	Slide 18: Solving CSPs
	Slide 19: Standard Search Formulation
	Slide 20: Question: Search for CSPs
	Slide 21: Depth First Search
	Slide 22: Demo – Naïve Search
	Slide 23: Backtracking Search
	Slide 24: Backtracking Search
	Slide 25: Backtracking Example
	Slide 26: Backtracking Search
	Slide 27: Backtracking Search
	Slide 28: Backtracking Search
	Slide 29: Backtracking Search
	Slide 30: Backtracking Search
	Slide 31: Backtracking Search
	Slide 32: Improving Backtracking
	Slide 33: Filtering
	Slide 34: Filtering: Forward Checking
	Slide 35: Filtering: Forward Checking
	Slide 36: Filtering: Forward Checking
	Slide 37: Filtering: Forward Checking
	Slide 38: Filtering: Forward Checking
	Slide 39: Demo – Backtracking with Forward Checking
	Slide 40: Filtering: Constraint Propagation
	Slide 41: Consistency of A Single Arc
	Slide 42: Consistency of A Single Arc
	Slide 43: How to Enforce Arc Consistency of Entire CSP
	Slide 44: AC-3: Enforce Arc Consistency of Entire CSP
	Slide 45: AC-3: Enforce Arc Consistency of Entire CSP
	Slide 46: AC-3: Enforce Arc Consistency of Entire CSP
	Slide 47: AC-3: Enforce Arc Consistency of Entire CSP
	Slide 48: AC-3: Enforce Arc Consistency of Entire CSP
	Slide 49: AC-3: Enforce Arc Consistency of Entire CSP
	Slide 50: AC-3: Enforce Arc Consistency of Entire CSP
	Slide 51: AC-3: Enforce Arc Consistency of Entire CSP
	Slide 52: AC-3: Enforce Arc Consistency of Entire CSP
	Slide 53: Poll 1: After assigning Q to Green, what gets added to the Queue?
	Slide 54: AC-3: Enforce Arc Consistency of Entire CSP
	Slide 55: AC-3: Enforce Arc Consistency of Entire CSP
	Slide 56: AC-3: Enforce Arc Consistency of Entire CSP
	Slide 57: AC-3: Enforce Arc Consistency of Entire CSP
	Slide 58: AC-3: Enforce Arc Consistency of Entire CSP
	Slide 59: AC-3: Enforce Arc Consistency of Entire CSP
	Slide 60: AC-3: Enforce Arc Consistency of Entire CSP
	Slide 61: Limitations of Arc Consistency
	Slide 62: Backtracking Search with AC-3
	Slide 63: Demo – Backtracking with AC-3
	Slide 64: Complexity of a single run of AC-3
	Slide 65: Complexity of a single run of AC-3
	Slide 66: Complexity of a single run of AC-3
	Slide 67: Complexity of a single run of AC-3
	Slide 68: Ordering
	Slide 69: Backtracking Search
	Slide 70: Ordering: Minimum Remaining Values
	Slide 71: Ordering: Least Constraining Value
	Slide 72: Ordering: Least Constraining Value
	Slide 73: Demo – Coloring with a Complex Graph
	Slide 74: How to deal with non-binary CSPs?
	Slide 75: Constraint graph for non-binary CSPs
	Slide 76: Solve non-binary CSPs
	Slide 77: Solve non-binary CSPs
	Slide 78: Summary: CSPs
	Slide 79: Additional Resources (Not required)

