
Announcements
Assignments:

▪ HW3 (online)

▪ Due Tue 9/19, 10 pm

▪ P1: Search and Games

▪ Due Mon 9/18, 10 pm

▪ Submit to Gradescope early and as often as you like

Recitation:

▪ Last week to “shop around”

▪ Stay tuned to Piazza for informal recitation switch form

Outlook: HW4 due 9/26, Exam 1 9/28



Plan
Last Time

▪ Constraint Satisfaction Problems

Today

▪ CSPs continued (MRV, LCV)

▪ Local Search



Back to CSPs Lecture



AI: Representation and Problem Solving
Local Search

Instructors: Vincent Conitzer and Aditi Raghunathan

Slide credits: CMU AI, http://ai.berkeley.edu



Local Search

• Can be applied to identification problems (e.g., CSPs), as well as some 
planning and optimization problems

• For identification problems, we use a complete-state formulation, 
e.g., all variables assigned in a CSP (may not satisfy all the constraints)

• For planning problems, typically we make local decisions.                
e.g., not a plan all the way to the goal or not a deep search 



Iterative Improvement for CSPs



Iterative Improvement for CSPs

• Start with an arbitrary assignment, iteratively reassign variable values

• While not solved,
• Variable selection: randomly select a conflicted variable
• Value selection with min-conflicts heuristic ℎ: Choose a value that violates the fewest 

constraints (break tie randomly)

• For 𝑛-Queens: Variables 𝑥𝑖 ∈ {1. . 𝑛}; Constraints 𝑥𝑖 ≠ 𝑥𝑗, 𝑥𝑖 − 𝑥𝑗 ≠ 𝑖 − 𝑗 , ∀𝑖 ≠ 𝑗



Iterative Improvement for CSPs
• Given random initial state, can solve n-queens in almost constant time for arbitrary n 

with high probability (e.g., n = 10,000,000)!

• Same for any randomly-generated CSP except in a narrow range of the ratio



Local Search

• A local search algorithm is…
• Optimal if it always finds a global minimum/maximum heuristic value

Will an iterative improvement algorithm for 
CSPs always find a solution?

No! May get stuck in a local optimum

ℎ = 1



State-Space Landscape
In identification problems, could be a function measuring how close you are to a 
valid solution, e.g., −1 × #conflicts in n-Queens/CSP

What’s the difference between 
shoulder and flat local maximum 
(both are plateaux)?



Hill Climbing (Greedy Local Search)
• Simple, general idea:

• Start wherever

• Repeat: move to the best “neighboring” state 
(successor state) instead of picking variable 
randomly

• If no neighbors better than current, quit



Hill Climbing (Greedy Local Search)

What if there is a tie?

Typically break ties randomly

What if we do not stop here?

• In 8-Queens, steepest-ascent hill climbing solves 14% of problem instances
• Takes 4 steps on average when it succeeds, and 3 steps when it fails

• When allow for ≤100 consecutive sideway moves, solves 94% of problem instances
• Takes 21 steps on average when it succeeds, and 64 steps when it fails

Make a sideway move if “=”



Poll 1: Hill Climbing
1. Starting from X, where do you end up?
2. Starting from Y, where do you end up?
3. Starting from Z, where do you end up?

I.  𝑋 → 𝐴, 𝑌 → 𝐷, 𝑍 → 𝐸
II.  𝑋 → 𝐵, 𝑌 → 𝐷, 𝑍 → 𝐸
III.  𝑋 → 𝐵, 𝑌 → 𝐸, 𝑍 → 𝐸
IV.  I don’t know



Variants of Hill Climbing

• Random-restart hill climbing
• “If at first you don’t succeed, try, try again.”

• What kind of landscape will random-restarts hill climbing work the best?

• Stochastic hill climbing
• Choose randomly from the uphill moves, with probability dependent on the 

“steepness” (i.e., amount of improvement)

• Converge slower than steepest ascent, but may find better solutions

• First-choice hill climbing
• Generate successors randomly (one by one) until a better one is found

• Suitable when there are too many successors to enumerate



Variants of Hill Climbing
• What if variables are continuous, e.g. find 𝑥 ∈ [0,1] that maximizes 𝑓 𝑥 ?

• Gradient ascent

• Use gradient to find best direction

• Use the magnitude of the gradient to determine how big a step you move

Value space of variables



Random Walk

• Uniformly randomly choose a neighbor to move to

• Save the best you’ve seen so far

• Stop after K moves

• What happens to the solution as K increases?



Simulated Annealing

• Combines random walk and hill climbing

• Inspired by statistical physics

• Annealing – Metallurgy
• Heating metal to high temperature then cooling

• Reaching low energy state

• Simulated Annealing – Local Search
• Allow for downhill moves and make them rarer as time goes on

• Escape local maxima and reach global maxima



Simulated Annealing

Almost the same as hill climbing 
except for a random successor

Unlike hill climbing, move 
downhill with some prob.

Control the change of 
temperature 𝑇 (↓ over time)



Poll 2:
Which of the following will make it more 
likely that we’ll take a downward step?

A. Decrease 𝑇, decrease Δ𝐸
B. Decrease 𝑇, increase Δ𝐸
C. Increase 𝑇, decrease Δ𝐸
D. Increase 𝑇, increase Δ𝐸



Poll 2:
Which of the following will make it more 
likely that we’ll take a downward step?

A. Decrease 𝑇, decrease Δ𝐸
B. Decrease 𝑇, increase Δ𝐸
C. Increase 𝑇, decrease Δ𝐸
D. Increase 𝑇, increase Δ𝐸

Δ𝐸 is negative but should be close to 0, 
T should be big because of E’s negative



Simulated Annealing

• 𝑃 move downhill = 𝑒Δ𝐸/𝑇

• Bad moves are more likely to be allowed when 𝑇 
is high (at the beginning of the algorithm)

• Worse moves are less likely to be allowed

• Guarantee: If 𝑇 decreased slowly enough, will converge to optimal state!

• But! In reality, the more downhill steps you need to escape a local optimum, the 
less likely you are to ever make them all in a row



Summary: Local Search

• Maintain a constant number of current nodes or states, and move to 
“neighbors” or generate “offspring” in each iteration
• Do not maintain a search tree or multiple paths

• Typically, do not retain the path to the node

• Advantages
• Use little memory

• Can potentially solve large-scale problems or get a reasonable (suboptimal or 
almost feasible) solution
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