Announcements

Assignments:

- HW3 (online)
 - Due Tue 9/19, 10 pm
- P1: Search and Games
 - Due Mon 9/18, 10 pm
 - Submit to Gradescope early and as often as you like

Recitation:

- Last week to "shop around"
- Stay tuned to Piazza for informal recitation switch form

Outlook: HW4 due 9/26, Exam 1 9/28

Plan

Last Time

Constraint Satisfaction Problems

Today

- CSPs continued (MRV, LCV)
- Local Search

Back to CSPs Lecture

AI: Representation and Problem Solving Local Search

Instructors: Vincent Conitzer and Aditi Raghunathan

Slide credits: CMU AI, http://ai.berkeley.edu

Local Search

- Can be applied to identification problems (e.g., CSPs), as well as some planning and optimization problems
- For identification problems, we use a complete-state formulation, e.g., all variables assigned in a CSP (may not satisfy all the constraints)
- For planning problems, typically we make local decisions. e.g., not a plan all the way to the goal or not a deep search

Iterative Improvement for CSPs

Iterative Improvement for CSPs

- Start with an arbitrary assignment, iteratively *reassign* variable values
- While not solved,
 - Variable selection: randomly select a conflicted variable
 - Value selection with min-conflicts heuristic h: Choose a value that violates the fewest constraints (break tie randomly)
- For *n*-Queens: Variables $x_i \in \{1..n\}$; Constraints $x_i \neq x_j$, $|x_i x_j| \neq |i j|, \forall i \neq j$

h = 5

h = 2

h = 0

Iterative Improvement for CSPs

- Given random initial state, can solve n-queens in almost constant time for arbitrary n with high probability (e.g., n = 10,000,000)!
- Same for any randomly-generated CSP *except* in a narrow range of the ratio

Local Search

• A local search algorithm is...

• Optimal if it always finds a global minimum/maximum heuristic value

Will an iterative improvement algorithm for CSPs always find a solution?

No! May get stuck in a local optimum

h = 1

State-Space Landscape

In identification problems, could be a function measuring how close you are to a valid solution, e.g., $-1 \times$ #conflicts in n-Queens/CSP

Hill Climbing (Greedy Local Search)

g.

- Simple, general idea:
 - Start wherever
 - Repeat: move to the best "neighboring" state (successor state) instead of picking variable randomly
 - If no neighbors better than current, quit

Hill Climbing (Greedy Local Search)

function HILL-CLIMBING(*problem*) returns a state that is a local maximum

- In 8-Queens, steepest-ascent hill climbing solves 14% of problem instances
 - Takes 4 steps on average when it succeeds, and 3 steps when it fails
- When allow for \leq 100 consecutive sideway moves, solves 94% of problem instances
 - Takes 21 steps on average when it succeeds, and 64 steps when it fails

Poll 1: Hill Climbing

Starting from X, where do you end up?
 Starting from Y, where do you end up?
 Starting from Z, where do you end up?

I. $X \rightarrow A, Y \rightarrow D, Z \rightarrow E$ II. $X \rightarrow B, Y \rightarrow D, Z \rightarrow E$ III. $X \rightarrow B, Y \rightarrow E, Z \rightarrow E$ IV. I don't know

Variants of Hill Climbing

- Random-restart hill climbing
 - "If at first you don't succeed, try, try again."
 - What kind of landscape will random-restarts hill climbing work the best?
- Stochastic hill climbing
 - Choose randomly from the uphill moves, with probability dependent on the "steepness" (i.e., amount of improvement)
 - Converge slower than steepest ascent, but may find better solutions
- First-choice hill climbing
 - Generate successors randomly (one by one) until a better one is found
 - Suitable when there are too many successors to enumerate

Variants of Hill Climbing

- What if variables are continuous, e.g. find $x \in [0,1]$ that maximizes f(x)?
 - Gradient ascent
 - Use gradient to find best direction
 - Use the magnitude of the gradient to determine how big a step you move

Random Walk

- Uniformly randomly choose a neighbor to move to
- Save the best you've seen so far
- Stop after K moves
- What happens to the solution as K increases?

Simulated Annealing

- Combines random walk and hill climbing
- Inspired by statistical physics
- Annealing Metallurgy
 - Heating metal to high temperature then cooling
 - Reaching low energy state
- Simulated Annealing Local Search
 - Allow for downhill moves and make them rarer as time goes on
 - Escape local maxima and reach global maxima

Simulated Annealing

function SIMULATED-ANNEALING(problem, schedule) returns a solution state
inputs: problem, a problem
 schedule, a mapping from time to "temperature"

```
current \leftarrow Make-Node(problem.Initial-State)
```

for t = 1 to ∞ do

 $T \leftarrow schedule(t)$

Control the change of

if T = 0 then return *current* temperature T (\downarrow over time)

 $next \leftarrow a \text{ randomly selected successor of } current$ $\Delta E \leftarrow next. VALUE - current. VALUE$

if $\Delta E > 0$ then $current \leftarrow next$

else $current \leftarrow next$ only with probability $e^{\Delta E/T}$

Almost the same as hill climbing except for a *random* successor Unlike hill climbing, move downhill with some prob.

Poll 2:

Which of the following will make it more likely that we'll take a downward step?

- A. Decrease *T*, decrease ΔE
- B. Decrease *T*, increase ΔE
- C. Increase *T*, decrease ΔE
- D. Increase *T*, increase ΔE

function SIMULATED-ANNEALING(*problem*, *schedule*) returns a solution state inputs: *problem*, a problem *schedule*, a mapping from time to "temperature" *current* \leftarrow MAKE-NODE(*problem*.INITIAL-STATE) for t = 1 to ∞ do $T \leftarrow schedule(t)$ if T = 0 then return *current next* \leftarrow a randomly selected successor of *current* $\Delta E \leftarrow next.VALUE - current.VALUE$

```
if \Delta E > 0 then current \leftarrow next
else current \leftarrow next only with probability e^{\Delta E/T}
```

Poll 2:

Which of the following will make it more likely that we'll take a downward step?

- A. Decrease *T*, decrease ΔE
- B. Decrease *T*, increase ΔE
- C. Increase *T*, decrease ΔE
- D. Increase *T*, increase ΔE

 ΔE is negative but should be close to 0, T should be big because of E's negative

function SIMULATED-ANNEALING(problem, schedule) returns a solution state
inputs: problem, a problem
 schedule, a mapping from time to "temperature"
 current ← MAKE-NODE(problem.INITIAL-STATE)

```
for t = 1 to \infty do
```

```
T \gets schedule(t)
```

if T = 0 then return *current*

 $next \leftarrow a randomly selected successor of current$

 $\Delta E \gets next. \texttt{VALUE} - current. \texttt{VALUE}$

if $\Delta E > 0$ then $current \leftarrow next$

else $current \leftarrow next$ only with probability $e^{\Delta E/T}$

Simulated Annealing

- $P[\text{move downhill}] = e^{\Delta E/T}$
 - Bad moves are more likely to be allowed when T is high (at the beginning of the algorithm)
 - Worse moves are less likely to be allowed

- Guarantee: If T decreased slowly enough, will converge to optimal state:
- But! In reality, the more downhill steps you need to escape a local optimum, the less likely you are to ever make them all in a row

Summary: Local Search

- Maintain a constant number of current nodes or states, and move to "neighbors" or generate "offspring" in each iteration
 - Do not maintain a search tree or multiple paths
 - Typically, do not retain the path to the node
- Advantages
 - Use little memory
 - Can potentially solve large-scale problems or get a reasonable (suboptimal or almost feasible) solution