
Announcements
Assignments:

▪ HW3 (online)

▪ Due Tue 9/19, 10 pm

▪ P1: Search and Games

▪ Due Mon 9/18, 10 pm

▪ Submit to Gradescope early and as often as you like

Recitation:

▪ Last week to “shop around”

▪ Stay tuned to Piazza for informal recitation switch form

Outlook: HW4 due 9/26, Exam 1 9/28

Plan
Last Time

▪ Constraint Satisfaction Problems

Today

▪ CSPs continued (MRV, LCV)

▪ Local Search

Back to CSPs Lecture

AI: Representation and Problem Solving
Local Search

Instructors: Vincent Conitzer and Aditi Raghunathan

Slide credits: CMU AI, http://ai.berkeley.edu

Local Search

• Can be applied to identification problems (e.g., CSPs), as well as some
planning and optimization problems

• For identification problems, we use a complete-state formulation,
e.g., all variables assigned in a CSP (may not satisfy all the constraints)

• For planning problems, typically we make local decisions.
e.g., not a plan all the way to the goal or not a deep search

Iterative Improvement for CSPs

Iterative Improvement for CSPs

• Start with an arbitrary assignment, iteratively reassign variable values

• While not solved,
• Variable selection: randomly select a conflicted variable
• Value selection with min-conflicts heuristic ℎ: Choose a value that violates the fewest

constraints (break tie randomly)

• For 𝑛-Queens: Variables 𝑥𝑖 ∈ {1. . 𝑛}; Constraints 𝑥𝑖 ≠ 𝑥𝑗, 𝑥𝑖 − 𝑥𝑗 ≠ 𝑖 − 𝑗 , ∀𝑖 ≠ 𝑗

Iterative Improvement for CSPs
• Given random initial state, can solve n-queens in almost constant time for arbitrary n

with high probability (e.g., n = 10,000,000)!

• Same for any randomly-generated CSP except in a narrow range of the ratio

Local Search

• A local search algorithm is…
• Optimal if it always finds a global minimum/maximum heuristic value

Will an iterative improvement algorithm for
CSPs always find a solution?

No! May get stuck in a local optimum

ℎ = 1

State-Space Landscape
In identification problems, could be a function measuring how close you are to a
valid solution, e.g., −1 × #conflicts in n-Queens/CSP

What’s the difference between
shoulder and flat local maximum
(both are plateaux)?

Hill Climbing (Greedy Local Search)
• Simple, general idea:

• Start wherever

• Repeat: move to the best “neighboring” state
(successor state) instead of picking variable
randomly

• If no neighbors better than current, quit

Hill Climbing (Greedy Local Search)

What if there is a tie?

Typically break ties randomly

What if we do not stop here?

• In 8-Queens, steepest-ascent hill climbing solves 14% of problem instances
• Takes 4 steps on average when it succeeds, and 3 steps when it fails

• When allow for ≤100 consecutive sideway moves, solves 94% of problem instances
• Takes 21 steps on average when it succeeds, and 64 steps when it fails

Make a sideway move if “=”

Poll 1: Hill Climbing
1. Starting from X, where do you end up?
2. Starting from Y, where do you end up?
3. Starting from Z, where do you end up?

I. 𝑋 → 𝐴, 𝑌 → 𝐷, 𝑍 → 𝐸
II. 𝑋 → 𝐵, 𝑌 → 𝐷, 𝑍 → 𝐸
III. 𝑋 → 𝐵, 𝑌 → 𝐸, 𝑍 → 𝐸
IV. I don’t know

Variants of Hill Climbing

• Random-restart hill climbing
• “If at first you don’t succeed, try, try again.”

• What kind of landscape will random-restarts hill climbing work the best?

• Stochastic hill climbing
• Choose randomly from the uphill moves, with probability dependent on the

“steepness” (i.e., amount of improvement)

• Converge slower than steepest ascent, but may find better solutions

• First-choice hill climbing
• Generate successors randomly (one by one) until a better one is found

• Suitable when there are too many successors to enumerate

Variants of Hill Climbing
• What if variables are continuous, e.g. find 𝑥 ∈ [0,1] that maximizes 𝑓 𝑥 ?

• Gradient ascent

• Use gradient to find best direction

• Use the magnitude of the gradient to determine how big a step you move

Value space of variables

Random Walk

• Uniformly randomly choose a neighbor to move to

• Save the best you’ve seen so far

• Stop after K moves

• What happens to the solution as K increases?

Simulated Annealing

• Combines random walk and hill climbing

• Inspired by statistical physics

• Annealing – Metallurgy
• Heating metal to high temperature then cooling

• Reaching low energy state

• Simulated Annealing – Local Search
• Allow for downhill moves and make them rarer as time goes on

• Escape local maxima and reach global maxima

Simulated Annealing

Almost the same as hill climbing
except for a random successor

Unlike hill climbing, move
downhill with some prob.

Control the change of
temperature 𝑇 (↓ over time)

Poll 2:
Which of the following will make it more
likely that we’ll take a downward step?

A. Decrease 𝑇, decrease Δ𝐸
B. Decrease 𝑇, increase Δ𝐸
C. Increase 𝑇, decrease Δ𝐸
D. Increase 𝑇, increase Δ𝐸

Poll 2:
Which of the following will make it more
likely that we’ll take a downward step?

A. Decrease 𝑇, decrease Δ𝐸
B. Decrease 𝑇, increase Δ𝐸
C. Increase 𝑇, decrease Δ𝐸
D. Increase 𝑇, increase Δ𝐸

Δ𝐸 is negative but should be close to 0,
T should be big because of E’s negative

Simulated Annealing

• 𝑃 move downhill = 𝑒Δ𝐸/𝑇

• Bad moves are more likely to be allowed when 𝑇
is high (at the beginning of the algorithm)

• Worse moves are less likely to be allowed

• Guarantee: If 𝑇 decreased slowly enough, will converge to optimal state!

• But! In reality, the more downhill steps you need to escape a local optimum, the
less likely you are to ever make them all in a row

Summary: Local Search

• Maintain a constant number of current nodes or states, and move to
“neighbors” or generate “offspring” in each iteration
• Do not maintain a search tree or multiple paths

• Typically, do not retain the path to the node

• Advantages
• Use little memory

• Can potentially solve large-scale problems or get a reasonable (suboptimal or
almost feasible) solution

	Slide 1: Announcements
	Slide 2: Plan
	Slide 3: Back to CSPs Lecture
	Slide 4: AI: Representation and Problem Solving
	Slide 5: Local Search
	Slide 6: Iterative Improvement for CSPs
	Slide 7: Iterative Improvement for CSPs
	Slide 8: Iterative Improvement for CSPs
	Slide 9: Local Search
	Slide 10: State-Space Landscape
	Slide 11: Hill Climbing (Greedy Local Search)
	Slide 12: Hill Climbing (Greedy Local Search)
	Slide 13: Poll 1: Hill Climbing
	Slide 14: Variants of Hill Climbing
	Slide 15: Variants of Hill Climbing
	Slide 16: Random Walk
	Slide 17: Simulated Annealing
	Slide 18: Simulated Annealing
	Slide 19: Poll 2:
	Slide 20: Poll 2:
	Slide 21: Simulated Annealing
	Slide 22: Summary: Local Search

