
Cost-Based Search as IP
Credits to Gavin for the problem :)

Announcements

● Midterm 1 on Thursday 9/28
○ One page cheat sheet double-sided, must be hand-written with paper and pen

○ Two practice midterms + solutions released

○ Covers Lectures 1-9 (everything before midterm is fair game)

Motivation

● Many problems can be solved by search (e.g., backtracking, branch and

bound, etc.) but we haven’t seen anything on the other direction

● IP is a very expressive representation

Formulating Search as IP

Formulating Search as IP

Variables:

Formulating Search as IP

Variables: binary variable for each edge in the graph, representing

whether the edge is in the final path or not (0 means edge is not in

the final path, 1 means edge is in the final path)

Formulating Search as IP

Variables: binary variable for each edge in the graph, representing

whether the edge is in the final path or not (0 means edge is not in

the final path, 1 means edge is in the final path)

Ex: xX→Y is a binary variable representing whether the edge X → Y is

in the final path

Formulating Search as IP

How to represent the path S→A→C→G?

Formulating Search as IP

How to represent the path S→A→C→G?

3 edges: {S→A, A→C, C→G}

xS→A = indicator for whether S→A is in the path, etc (same for every

path in our graph)

Formulating Search as IP

How to represent the path S→A→C→G?

3 edges: {S→A, A→C, C→G}

xS→A = indicator for whether S→A is in the path, etc (same for every path in our

graph)

Formulating Search as IP

How to represent the path S→A→C→G?

3 edges: {S→A, A→C, C→G}

xS→A = indicator for whether S→A is in the path, etc (same for every path in our

graph)

9-tuple: (1, 0, 0, 1, 0, 0, 0, 1, 0)

Order: xS→A , xS→B , xA→B , xA→C , xB→C , xB→G , xC→S , xC→G , xG→C

a) i) 9-tuple representation for S→A→B→C→G

Order: xS→A , xS→B , xA→B , xA→C , xB→C , xB→G , xC→S , xC→G , xG→C

a) i) 9-tuple representation for S→A→B→C→G

Order: xS→A , xS→B , xA→B , xA→C , xB→C , xB→G , xC→S , xC→G , xG→C

a) i) 9-tuple representation for S→A→B→C→G

(1, 0, 1, 0, 1, 0, 0, 1, 0)

Order: xS→A , xS→B , xA→B , xA→C , xB→C , xB→G , xC→S , xC→G , xG→C

a) i) 9-tuple representation for S→A→B→C→G

(1, 0, 1, 0, 1, 0, 0, 1, 0)

ii) 9-tuple representation for A→C→S→B

Order: xS→A , xS→B , xA→B , xA→C , xB→C , xB→G , xC→S , xC→G , xG→C

a) i) 9-tuple representation for S→A→B→C→G

(1, 0, 1, 0, 1, 0, 0, 1, 0)

ii) 9-tuple representation for A→C→S→B

(0, 1, 0, 1, 0, 0, 1, 0, 0)

Order: xS→A , xS→B , xA→B , xA→C , xB→C , xB→G , xC→S , xC→G , xG→C

a) i) 9-tuple representation for S→A→B→C→G

(1, 0, 1, 0, 1, 0, 0, 1, 0)

ii) 9-tuple representation for A→C→S→B

(0, 1, 0, 1, 0, 0, 1, 0, 0)

iii) Path that corresponds to (0, 0, 1, 0, 1, 0, 0, 0, 0)

Order: xS→A , xS→B , xA→B , xA→C , xB→C , xB→G , xC→S , xC→G , xG→C

a) i) 9-tuple representation for S→A→B→C→G

(1, 0, 1, 0, 1, 0, 0, 1, 0)

ii) 9-tuple representation for A→C→S→B

(0, 1, 0, 1, 0, 0, 1, 0, 0)

iii) Path that corresponds to (0, 0, 1, 0, 1, 0, 0, 0, 0)

A→B→C

Order: xS→A , xS→B , xA→B , xA→C , xB→C , xB→G , xC→S , xC→G , xG→C

Constraints:

Constraints: need to make sure paths are valid

Constraints: need to make sure paths are valid

1) Ensure path starts at S

Constraints: need to make sure paths are valid

1) Ensure path starts at S

2) Ensure path ends at G

Constraint 1: path starts at S

Constraint 1: path starts at S

Two nodes going out of S: A and B

Constraint 1: path starts at S

Two nodes going out of S: A and B → either xS→A or xS→B must be 1

Constraint 1: path starts at S

Two nodes going out of S: A and B → either xS→A or xS→B must be 1

xS→A + xS→B = 1

Constraint 1: path starts at S

Two nodes going out of S: A and B → either xS→A or xS→B must be 1

xS→A + xS→B = 1

Inequality form: xS→A + xS→B <= 1 and -xS→A - xS→B <= -1

Constraint 1: path starts at S

Two nodes going out of S: A and B → either xS→A or xS→B must be 1

xS→A + xS→B = 1

Inequality form: xS→A + xS→B <= 1 and -xS→A - xS→B <= -1

One node going into S: C

Constraint 1: path starts at S

Two nodes going out of S: A and B → either xS→A or xS→B must be 1

xS→A + xS→B = 1

Inequality form: xS→A + xS→B <= 1 and -xS→A - xS→B <= -1

One node going into S: C

xC→S = 0

Constraint 1: path starts at S

Two nodes going out of S: A and B → either xS→A or xS→B must be 1

xS→A + xS→B = 1

Inequality form: xS→A + xS→B <= 1 and -xS→A - xS→B <= -1

One node going into S: C

xC→S <= 0 and -xC→S <= 0

Constraint 1: path starts at S

Two nodes going out of S: A and B → either xS→A or xS→B must be 1

xS→A + xS→B = 1

Inequality form: xS→A + xS→B <= 1 and -xS→A - xS→B <= -1

One node going into S: C

xC→S <= 0 and -xC→S <= 0

Constraint 2: path ends at G

Constraint 2: path ends at G

Two nodes going into G: C and B → either xC→G or xS→B must be 1

xC→G + xS→B <= 1 and -xC→G - xS→B <= -1

Constraint 2: path ends at G

Two nodes going into G: C and B → either xC→G or xS→B must be 1

xC→G + xS→B <= 1 and -xC→G - xS→B <= -1

One node coming out of G: C → xG→C must be 0

xC→G <= 0 and -xC→G <= 0

Constraint 2: path ends at G

Two nodes going into G: C and B → either xC→G or xS→B must be 1

xC→G + xS→B <= 1 and -xC→G - xS→B <= -1

One node coming out of G: C → xG→C must be 0

xC→G <= 0 and -xC→G <= 0

Constraints: need to make sure paths are valid

1) Ensure path starts at S - done

2) Ensure path ends at G - done

Constraints: need to make sure paths are valid

1) Ensure path starts at S - done

2) Ensure path ends at G - done

These two constraints are not enough :(

Constraints: need to make sure paths are valid

1) Ensure path starts at S - done

2) Ensure path ends at G - done

Question: 9-tuple that satisfies these constraints but does not represent a valid

path from S to G

Constraints: need to make sure paths are valid

1) Ensure path starts at S - done

2) Ensure path ends at G - done

Question: 9-tuple that satisfies these constraints but does not represent a valid

path from S to G

{S→A, C→G}: (1, 0, 0, 0, 0, 0, 0, 1, 0)

More constraints: ensure all other nodes are non-terminal (not start or goal)

More constraints: ensure all other nodes are non-terminal (not start or goal)

● Path can only pass through each non-terminal node at most once

More constraints: ensure all other nodes are non-terminal (not start or goal)

● Path can only pass through each non-terminal node at most once

Constraint that node B can only appear on the path at most once:

More constraints: ensure all other nodes are non-terminal (not start or goal)

● Path can only pass through each non-terminal node at most once

Constraint that node B can only appear on the path at most once:

Two nodes going into B: S, A

More constraints: ensure all other nodes are non-terminal (not start or goal)

● Path can only pass through each non-terminal node at most once

Constraint that node B can only appear on the path at most once:

Two nodes going into B: S, A → either xS→B or xA→B must be 1, but both cannot be 1

More constraints: ensure all other nodes are non-terminal (not start or goal)

● Path can only pass through each non-terminal node at most once

Constraint that node B can only appear on the path at most once:

Two nodes going into B: S, A → either xS→B or xA→B must be 1, but both cannot be 1

xS→B + xA→B <= 1

More constraints: ensure all other nodes are non-terminal (not start or goal)

● Path can only pass through each non-terminal node at most once

Constraint that node B can only appear on the path at most once:

Two nodes going into B: S, A → either xS→B or xA→B must be 1, but both cannot be 1

xS→B + xA→B <= 1

Two nodes coming out of B: C, G → either xB→C or xB→G must be 1, but both cannot

be 1

More constraints: ensure all other nodes are non-terminal (not start or goal)

● Path can only pass through each non-terminal node at most once

Constraint that node B can only appear on the path at most once:

Two nodes going into B: S, A → either xS→B or xA→B must be 1, but both cannot be 1

xS→B + xA→B <= 1

Two nodes coming out of B: C, G → either xB→C or xB→G must be 1, but both cannot

be 1

xB→C + xB→G <= 1

More constraints: If there is an edge to B, then there must be an edge out of B

(otherwise, B is either a dead end or a start)

More constraints: If there is an edge to B, then there must be an edge out of B

(otherwise, B is either a dead end or a start)

Idea: number of edges into B = number of edges out of B (we already constrained

that you can only have one of those edges)

More constraints: If there is an edge to B, then there must be an edge out of B

(otherwise, B is either a dead end or a start)

Idea: number of edges into B = number of edges out of B (we already constrained

that you can only have one of those edges)

xS→B + xA→B = xB→C + xB→G

More constraints: If there is an edge to B, then there must be an edge out of B

(otherwise, B is either a dead end or a start)

Idea: number of edges into B = number of edges out of B (we already constrained

that you can only have one of those edges)

xS→B + xA→B <= xB→C + xB→G

xS→B + xA→B >= xB→C + xB→G

More constraints: If there is an edge to B, then there must be an edge out of B

(otherwise, B is either a dead end or a start)

Idea: number of edges into B = number of edges out of B (we already constrained

that you can only have one of those edges)

xS→B + xA→B - xB→C - xB→G <= 0

-xS→B - xA→B + xB→C + xB→G <= 0

Objective function:

Objective function:

Idea: coefficient for each edge is the cost of that edge

Objective function:

Idea: coefficient for each edge is the cost of that edge

3xS→A + 7xS→B + 5xA→B + 4xA→C + 2xB→C + 1xB→G + 1xC→S + 6xC→G + 6xG→C

Still not enough to ensure a valid path :(

Still not enough to ensure a valid path :(

Counterexample:

Still not enough to ensure a valid path :(

Counterexample:

Idea: anything with a loop outside the path is still allowed by our constraints

How can we fix this?

How can we fix this?

Answer: we don’t have to :)

How can we fix this?

Answer: we don’t have to :)

Idea: If we have an extra cycle, that would just increase the total path cost. Because

we are trying to minimize cost, this would only hurt us, so we wouldn’t return such a

solution anyway.

Cost-Based Search as IP

● Now let’s put everything together, and define the following search algorithm
○ First convert the search problem into the IP representation

○ Then run an IP-solver (which is complete and optimal) on the representation

○ Reconstruct the path from start to goal by getting all the ones in the variables

● Is this is complete?

● Is this is optimal?

Cost-Based Search as IP

● Now let’s put everything together, and define the following search algorithm
○ First convert the search problem into the IP representation

○ Then run an IP-solver (which is complete and optimal) on the representation

○ Reconstruct the path from start to goal by getting all the ones in the variables

● Is this is complete? Yes

● Is this is optimal?

Cost-Based Search as IP

● Now let’s put everything together, and define the following search algorithm
○ First convert the search problem into the IP representation

○ Then run an IP-solver (which is complete and optimal) on the representation

○ Reconstruct the path from start to goal by getting all the ones in the variables

● Is this is complete? Yes

● Is this is optimal? Yes

Take Home Messages

● Cost-based search can be expressed, and solved with IP

● IP is very expressive, we can do many interesting things with it

● Want some more?

Minimax as IP!!! (Bonus question on the course website)

	Slide 1: Cost-Based Search as IP
	Slide 2: Announcements
	Slide 3: Motivation
	Slide 4: Formulating Search as IP
	Slide 5: Formulating Search as IP
	Slide 6: Formulating Search as IP
	Slide 7: Formulating Search as IP
	Slide 8: Formulating Search as IP
	Slide 9: Formulating Search as IP
	Slide 10: Formulating Search as IP
	Slide 11: Formulating Search as IP
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63: Cost-Based Search as IP
	Slide 64: Cost-Based Search as IP
	Slide 65: Cost-Based Search as IP
	Slide 66: Take Home Messages

