Warm-up:

What is the relationship between number of constraints and number of possible solutions?

In other words, as the number of the constraints increases, does the number of possible solutions:
A) Increase
B) Decrease
C) Stay the same

Announcements

Assignments:

- HW5 (written)
- Due Tues 10/10, 10 pm
- P2: Optimization
- Due Thurs 10/5, 10 pm
- P3: Logic and Classical Planning
- Out Thursday
- FIRST HALF!! Due Friday 10/13, 10 pm
- ALL!! Due Friday 10/27, 10 pm
- Grading

AI: Representation and Problem Solving

 Propositional Logic and Logical Agents

Instructors: Vincent Conitzer and Aditi Raghunathan
Slide credits: CMU AI, http://ai.berkeley.edu

Logical Agents

Logical agents and environments

Logical Agents

So what do we TELL our knowledge base (KB)?

- Facts (sentences)
- The grass is green
- The sky is blue
- Rules (sentences)
- Eating too much candy makes you sick
- When you're sick you don't go to school
- Percepts and Actions (sentences)
- Vince ate too much candy today

What happens when we ASK the agent?

- Inference - new sentences created from old
- Vince is not going to school today

Models

How do we represent possible worlds with models and knowledge bases?
How do we then do inference with these representations?

Logic Language

Natural language?

Propositional logic

- Syntax: $P \vee(\neg Q \wedge R) ; \quad X_{1} \Leftrightarrow$ (Raining \Rightarrow Sunny)
- Possible world: $\{P=$ true, $Q=$ true, $R=$ false, $S=$ true $\}$ or 1101
- Semantics: $\alpha \wedge \beta$ is true in a world iff is α true and β is true (etc.)

First-order logic

- Syntax: $\forall x \exists y P(x, y) \wedge \neg Q(J o e, f(x)) \Rightarrow f(x)=f(y)$
- Possible world: Objects $\mathrm{o}_{1}, \mathrm{o}_{2}, \mathrm{o}_{3}$; P holds for $\left\langle\mathrm{o}_{1}, \mathrm{o}_{2}\right\rangle ; \mathrm{Q}$ holds for $\left\langle\mathrm{o}_{3}\right\rangle ; \mathrm{f}\left(\mathrm{o}_{1}\right)=\mathrm{o}_{1}$; $\mathrm{Joe}_{\mathrm{O}} \mathrm{O}_{3}$; etc.
- Semantics: $\phi(\sigma)$ is true in a world if $\sigma=o_{j}$ and ϕ holds for o_{j}; etc.

Propositional Logic

Propositional Logic

Symbol:

- Variables that can be true or false
- We'll try to use capital letters, e.g. A, B, $\mathrm{P}_{1,2}$
- Often include True and False

Operators:

- \neg A: not A
- $A \wedge B: A$ and B (conjunction)
- $\mathrm{A} \vee \mathrm{B}: \mathrm{A}$ or B (disjunction) Note: this is not an "exclusive or"
- $A \Rightarrow B$: A implies B (implication). If A then B
- $A \Leftrightarrow B$: A if and only if B (biconditional)

Sentences

Propositional Logic Syntax

Given: a set of proposition symbols $\left\{\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{n}}\right\}$

- (we often add True and False for convenience) X_{i} is a sentence
If α is a sentence then $\neg \alpha$ is a sentence
If α and β are sentences then $\alpha \wedge \beta$ is a sentence
If α and β are sentences then $\alpha \vee \beta$ is a sentence
If α and β are sentences then $\alpha \Rightarrow \beta$ is a sentence
If α and β are sentences then $\alpha \Leftrightarrow \beta$ is a sentence
And p.s. there are no other sentences!

Propositional Logical Vocab

Literal

- Atomic sentence: True, False, Symbol, \neg Symbol

Clause

- Disjunction of literals: $A \vee B \vee \neg C$

Definite clause

- Disjunction of literals, exactly one is positive
- $\neg A \vee B \vee \neg C$

Horn clause

- Disjunction of literals, at most one is positive
- All definite clauses are Horn clauses

Notes on Operators
$\boldsymbol{\alpha} \vee \boldsymbol{\beta}$ is inclusive or, not exclusive

Truth Tables

$\alpha \vee \boldsymbol{\beta}$ is inclusive or, not exclusive

$\boldsymbol{\alpha}$	$\boldsymbol{\beta}$	$\boldsymbol{\alpha} \wedge \boldsymbol{\beta}$
F	F	F
F	T	F
T	F	F
T	T	T

$\boldsymbol{\alpha}$	$\boldsymbol{\beta}$	$\boldsymbol{\alpha} \vee \boldsymbol{\beta}$
F	F	F
F	T	T
T	F	T
T	T	T

Notes on Operators
$\boldsymbol{\alpha} \vee \boldsymbol{\beta}$ is inclusive or, not exclusive
$\alpha \Rightarrow \boldsymbol{\beta}$ is equivalent to $\neg \boldsymbol{\alpha} \vee \boldsymbol{\beta}$

- Says who?

Truth Tables

$\boldsymbol{\alpha} \Rightarrow \boldsymbol{\beta}$ is equivalent to $\neg \boldsymbol{\alpha} \vee \boldsymbol{\beta}$

$\boldsymbol{\alpha}$	$\boldsymbol{\beta}$	$\boldsymbol{\alpha} \Rightarrow \boldsymbol{\beta}$	$\neg \boldsymbol{\alpha}$	$\neg \boldsymbol{\alpha} \vee \boldsymbol{\beta}$
F	F	T	T	T
F	T	T	T	T
T	F	F	F	F
T	T	T	F	T

Notes on Operators

$\boldsymbol{\alpha} \vee \boldsymbol{\beta}$ is inclusive or, not exclusive
$\boldsymbol{\alpha} \Rightarrow \boldsymbol{\beta}$ is equivalent to $\neg \boldsymbol{\alpha} \vee \boldsymbol{\beta}$

- Says who?
$\alpha \Leftrightarrow \boldsymbol{\beta}$ is equivalent to $(\boldsymbol{\alpha} \Rightarrow \boldsymbol{\beta}) \wedge(\boldsymbol{\beta} \Rightarrow \boldsymbol{\alpha})$
- Prove it!

Truth Tables

$\boldsymbol{\alpha} \Leftrightarrow \boldsymbol{\beta}$ is equivalent to $(\boldsymbol{\alpha} \Rightarrow \boldsymbol{\beta}) \wedge(\boldsymbol{\beta} \Rightarrow \boldsymbol{\alpha})$

$\boldsymbol{\alpha}$	$\boldsymbol{\beta}$	$\boldsymbol{\alpha} \Leftrightarrow \boldsymbol{\beta}$	$\boldsymbol{\alpha} \Rightarrow \boldsymbol{\beta}$	$\boldsymbol{\beta} \Rightarrow \boldsymbol{\alpha}$	$(\boldsymbol{\alpha} \Rightarrow \boldsymbol{\beta}) \wedge(\boldsymbol{\beta} \Rightarrow \boldsymbol{\alpha})$
F	F	T	T	T	T
F	T	F	T	F	F
T	F	F	F	T	F
T	T	T	T	T	T

Equivalence: it's true in all models. Expressed as a logical sentence:

$$
(\boldsymbol{\alpha} \Leftrightarrow \boldsymbol{\beta}) \Leftrightarrow[(\boldsymbol{\alpha} \Rightarrow \boldsymbol{\beta}) \wedge(\boldsymbol{\beta} \Rightarrow \boldsymbol{\alpha})]
$$

Poll 1

If we know that $A \vee B$ and $\neg B \vee C$ are true, what do we know about $A \vee C$?
i. $\quad A \vee C$ is guaranteed to be true
ii. $\quad A \vee C$ is guaranteed to be false
iii. We don't have enough information to say anything definitive about $A \vee C$

Poll 1

If we know that $A \vee B$ and $\neg B \vee C$ are true, what do we know about $A \vee C$?

A	B	C	$A \vee B$	$\neg B \vee C$	$A \vee C$
false	false	false	false	true	false
false	false	true	false	true	true
false	true	false	true	false	false
false	true	true	true	true	true
true	false	false	true	true	true
true	false	true	true	true	true
true	true	false	true	false	true
true	true	true	true	true	true

Poll 1

If we know that $A \vee B$ and $\neg B \vee C$ are true, what do we know about $A \vee C$?

A	B	C	$A \vee B$	$\neg B \vee C$	$A \vee C$
false	false	false	false	true	false
false	false	true	false	true	true
false	true	false	true	false	false
false	true	true	true	true	true
true	false	false	true	true	true
true	false	true	true	true	true
true	true	false	true	false	true
true	true	true	true	true	true

Poll 1

If we know that $A \vee B$ and $\neg B \vee C$ are true, what do we know about $A \vee C$?
i. $\quad A \vee C$ is guaranteed to be true
ii. $\quad A \vee C$ is guaranteed to be false
iii. We don't have enough information to say anything definitive about $A \vee C$

Poll 2

If we know that $A \vee B$ and $\neg B \vee C$ are true, what do we know about A ?
i. $\quad A$ is guaranteed to be true
ii. $\quad A$ is guaranteed to be false
iii. We don't have enough information to say anything definitive about A

Poll 2

If we know that $A \vee B$ and $\neg B \vee C$ are true, what do we know about A ?

A	B	C	$A \vee B$	$\neg B \vee C$	$A \vee C$
false	false	false	false	true	false
false	false	true	false	true	true
false	true	false	true	false	false
false	true	true	true	true	true
true	false	false	true	true	true
true	false	true	true	true	true
true	true	false	true	false	true
true	true	true	true	true	true

Poll 2

If we know that $A \vee B$ and $\neg B \vee C$ are true, what do we know about A ?
i. $\quad A$ is guaranteed to be true
ii. $\quad A$ is guaranteed to be false
iii. We don't have enough information to say anything definitive about A

Logic Representation of World Models

- Knowledge Base of things we know to be true (logical sentences):

$$
\left.P \vee(\neg Q \wedge R) ; \quad X_{1} \Leftrightarrow \text { (Raining } \Rightarrow \text { Sunny }\right)
$$

- Possible world model (assignment of variables to values):

$$
\{P=\text { true, } \mathrm{Q}=\text { true, } \mathrm{R}=\text { false, } \mathrm{S}=\text { true }\} \text { or } 1101
$$

- Semantics: $\alpha \wedge \beta$ is true in a world iff is α true and β is true (etc.)

Propositional Logic

Check if sentence is true in given model In other words, does the model satisfy the sentence?
function PL-TRUE?(α, model) returns true or false if α is a symbol then return Lookup(α, model) if $\operatorname{Op}(\alpha)=\neg$ then return not(PL-TRUE?(Arg1(α), model)) if $\mathrm{Op}(\alpha)=\wedge$ then return and(PL-TRUE? $(\operatorname{Arg} 1(\alpha)$,model),

PL-TRUE?(Arg2(α),model))
etc.
(Sometimes called "recursion over syntax")

Sentences as Constraints

Adding a sentence to our knowledge base constrains the number of possible models:

Possible Models	P	Q	R
	false	false	false
	false	false	true
	false	true	false
	false	true	true
	true	false	false
	true	false	true
	true	true	false
	true	true	true

Sentences as Constraints

Adding a sentence to our knowledge base constrains the number of possible models:

KB: Nothing
KB: $[(P \wedge \neg Q) \vee(Q \wedge \neg P)] \Rightarrow R$

Possible Models	\mathbf{P}	\mathbf{Q}	\mathbf{R}
	false	false	false
	false	false	true
	false	tue	false
	false	true	true
	true	fatse	trale
	true	false	true
	true	true	false
	true	true	true

Sentences as Constraints

Adding a sentence to our knowledge base constrains the number of possible models:

KB: Nothing
KB: $[(P \wedge \neg Q) \vee(Q \wedge \neg P)] \Rightarrow R$
$K B: R,[(P \wedge \neg Q) \vee(Q \wedge \neg P)] \Rightarrow R$

Sherlock Entailment

"When you have eliminated the impossible, whatever remains, however improbable, must be the truth" - Sherlock Holmes via Sir Arthur Conan Doyle
(Not quite)

- Knowledge base and inference allow us to remove impossible models, helping us to see what is true in all of the remaining models

Wumpus World

Logical Reasoning as a CSP

- $\mathrm{B}_{\mathrm{ij}}=$ breeze felt
- $\mathrm{S}_{\mathrm{ij}}=$ stench smelt
- $P_{i j}=$ pit here
- $\mathrm{W}_{\mathrm{ij}}=$ wumpus here
- G = gold

3
4
http://thiagodnf.github.io/wumpus-world-simulator/

Wumpus World

Possible Models

- $\mathrm{P}_{1,2} \mathrm{P}_{2,2} \mathrm{P}_{3,1}$
- Knowledge base
- Breeze \Rightarrow Adjacent Pit
- Nothing in [1,1]
- Breeze in [2,1]

Entailment

Entailment: $\alpha \mid=\beta$ (" α entails β " or " β follows from α ") iff in every world where α is true, β is also true

- I.e., the α-worlds are a subset of the β-worlds $[\operatorname{models}(\alpha) \subseteq \operatorname{models}(\beta)]$

Usually, we want to know if $K B$ |= query

- models(KB) \subseteq models(query)
- In other words
- $K B$ removes all impossible models (any model where $K B$ is false)
- If query is true in all of these remaining models, we conclude that query must be true

Entailment and implication are very much related

- However, entailment relates two sentences, while an implication is itself a sentence (usually derived via inference to show entailment)

Wumpus World

Possible Models

- $P_{1,2} P_{2,2} P_{3,1}$
- Knowledge base
- Breeze \Rightarrow Pit Adjacent
- Pit \Rightarrow Breeze in all Adjacent
- Nothing in $[1,1]$
- Breeze in $[2,1]$

Entailment: $\mathrm{KB} \mid=\alpha$
"KB entails α " iff in every world where KB is true, α is also true

Wumpus World

Possible Models

- $P_{1,2} P_{2,2} P_{3,1}$
- Knowledge base
- Breeze \Rightarrow Adjacent Pit
- Pit \Rightarrow Breeze in all Adjacent
- Nothing in $[1,1]$
- Breeze in $[2,1]$
- Query α_{1} :
- No pit in $[1,2]$

Entailment: KB |= α
"KB entails α " iff in every world where KB is true, α is also true

Wumpus World

Possible Models

- $P_{1,2} P_{2,2} P_{3,1}$
- Knowledge base
- Breeze \Rightarrow Adjacent Pit
- Pit \Rightarrow Breeze in all Adjacent
- Nothing in $[1,1]$
- Breeze in [2,1]

- Query α_{2} :
- No pit in $[2,2]$

Entailment: $\mathrm{KB} \mid=\alpha$
"KB entails α " iff in every world where KB is true, α is also true

Wumpus World

Possible Models

- $P_{1,2} P_{2,2} P_{3,1}$
- Knowledge base
- Breeze \Rightarrow Adjacent Pit
- Pit \Rightarrow Breeze in all Adjacent
- Nothing in $[1,1]$
- Breeze in [2,1]
- Query α_{2} :
- No pit in [2,2] - UNSURE!!

Entailment: KB |= α
"KB entails α " iff in every world where KB is true, α is also true

Propositional Logic Models

All Possible Models									
			A	0	0	0	0	1	1
1	1								
B	0	0	1	1	0	0	1	1	
C	0	1	0	1	0	1	0	1	

Poll 3

Does the KB entail query C ?

Entailment: $\alpha \mid=\beta$
" α entails β " iff in every world where α is true, β is also true

All Possible Models

Model Symbols	A	0	0	0	0	1	1	1	1
	B	0	0	1	1	0	0	1	1
	C	0	1	0	1	0	1	0	1
Knowledge Base	A	0	0	0	0	1	1	1	1
	$B \Rightarrow C$	1	1	0	1	1	1	0	1
	$A \Rightarrow B \vee C$	1	1	1	1	0	1	1	1
Query	C	0	1	0	1	0	1	0	1

Poll 3

Does the KB entail query C?
Yes!
Entailment: $\alpha \mid=\beta$
" α entails β " iff in every world where α is true, β is also true

	All Possible Models								
	A	0	0	0	0	1	1	1	1
Model Symbols	B	0	0	1	1	0	0	1	1
	C	0	1	0	1	0	1	0	1
	A	0	0	0	0	1	1	1	1
Knowledge Base	$B \Rightarrow C$	1	1	0	1	1	1	0	1
	$A \Rightarrow B \vee C$	1	1	1	1	0		1	1
	KB		0	0	0	0		0	(1)
Query	C	0	1	0	1	0	1	0	(1)

Entailment

How do we implement a logical agent that proves entailment?

- Logic language
- Propositional logic
- First order logic
- Knowledge Base
- Add known logical rules and facts
- Inference algorithms
- Theorem proving
- Model checking

Simple Model Checking

function TT-ENTAILS?(KB, α) returns true or false

Simple Model Checking, contd.

Same recursion as backtracking

11111... 1
0000... 0

Simple Model Checking

function TT-ENTAILS? (KB, α) returns true or false return TT-CHECK-ALL(KB, α, symbols(KB) U symbols $(\alpha),\{ \})$
function TT-CHECK-ALL(KB, α, symbols, model) returns true or false if empty?(symbols) then
if PL-TRUE?(KB, model) then return PL-TRUE?(α, model)
else return true
else
$P \leftarrow$ first(symbols)
rest \leftarrow rest(symbols)
return and (TT-CHECK-ALL(KB, α, rest, model $\cup\{P=$ true $\}$)
TT-CHECK-ALL(KB, α, rest, model $\cup\{P=$ false $\})$)

Simple Model Checking, contd.

Same recursion as backtracking O(2n) time, linear space Can we do better?

Inference: Proofs

A proof is a demonstration of entailment between α and β
Method 1: model-checking

- For every possible world, if α is true make sure that is β true too
- OK for propositional logic (finitely many worlds); not easy for first-order logic

Method 2: theorem-proving

- Search for a sequence of proof steps (applications of inference rules) leading from α to β
- E.g., from $P \wedge(P \Rightarrow Q)$, infer Q by Modus Ponens

Properties

- Sound algorithm: everything it claims to prove is in fact entailed
- Complete algorithm: every sentence that is entailed can be proved

Simple Theorem Proving: Forward Chaining

Forward chaining applies Modus Ponens to generate new facts:

- Given $X_{1} \wedge X_{2} \wedge \ldots X_{n} \Rightarrow Y$ and $X_{1}, X_{2}, \ldots, X_{n}$
- Infer Y

Forward chaining keeps applying this rule, adding new facts, until nothing more can be added

Requires KB to contain only definite clauses:

- (Conjunction of symbols) \Rightarrow symbol; or
- A single symbol (note that X is equivalent to True $\Rightarrow X$)

Forward Chaining Algorithm

function PL-FC-ENTAILS?(KB, q) returns true or false

$$
\begin{aligned}
& \text { CLAUSES } \\
& P \Rightarrow Q \\
& L \wedge M \Rightarrow P \\
& B \wedge L \Rightarrow M \\
& A \wedge P \Rightarrow L \\
& A \wedge B \Rightarrow L \\
& A \\
& B
\end{aligned}
$$

Forward Chaining Algorithm

function PL-FC-ENTAILS?(KB, q) returns true or false
count \leftarrow a table, where count[c] is the number of symbols in c's premise inferred \leftarrow a table, where inferred[s] is initially false for all s agenda \leftarrow a queue of symbols, initially symbols known to be true in KB

Clatses	Count	Inferred	AGENDA
$\mathrm{P} \Rightarrow \mathrm{Q}$	1	A false	
$\mathrm{L} \wedge \mathrm{M} \Rightarrow \mathrm{P}$	2	B false	
$\mathrm{B} \wedge \mathrm{L} \Rightarrow \mathrm{M}$	2	L false	
$\mathrm{A} \wedge \mathrm{P} \Rightarrow \mathrm{L}$	2	M false	
$\mathrm{A} \wedge \mathrm{B} \Rightarrow \mathrm{L}$	2	P false	
A	0	Q false	
B	0		

Forward Chaining Example: Proving Q

Forward Chaining Algorithm

function PL-FC-ENTAILS?(KB, q) returns true or false count \leftarrow a table, where count[c] is the number of symbols in c's premise inferred \leftarrow a table, where inferred[s] is initially false for all s agenda \leftarrow a queue of symbols, initially symbols known to be true in KB while agenda is not empty do

```
p}<\mathrm{ Pop(agenda)
```

if $p=q$ then return true
if inferred[p] = false then
inferred[p]<true
for each clause c in KB where p is in c .premise do
decrement count[c]
if count[c] = 0 then add c.conclusion to agenda
return false

Properties of forward chaining

Theorem: FC is sound and complete for definite-clause KBs
Soundness: follows from soundness of Modus Ponens (easy to check)
Completeness proof:

1. FC reaches a fixed point where no new atomic sentences are derived
2. Consider the final inferred table as a model \boldsymbol{m}, assigning true/false to symbols
3. Every clause in the original KB is true for \boldsymbol{m}

Proof: Suppose a clause $a_{1} \wedge \ldots \wedge a_{k} \Rightarrow b$ is false for \boldsymbol{m}
A daxse true
Then $a_{1} \wedge \ldots \wedge a_{k}$ is true in \boldsymbol{m} and b is false for \boldsymbol{m}
Therefore the algorithm has not reached a fixed point!
4. Hence \boldsymbol{m} is a model of KB
5. If $K B \mid=q, q$ is true in every model of $K B$, including \boldsymbol{m}

B kadse true
L \& \& *ketrue M \& \& \& ketrue
P kaksetrue
Q *\& \& ysetrue

Does forward chaining work on this example?

$$
\begin{aligned}
& A \Rightarrow B \\
& \neg A \Rightarrow B
\end{aligned}
$$

Inference Rules

Modus Ponens

$$
\frac{\alpha \Rightarrow \beta, \quad \alpha}{\beta}
$$

Unit Resolution

$$
\frac{a \vee b, \quad \neg b \vee c}{a \vee c}
$$

General Resolution

$$
\frac{a_{1} \vee \cdots \vee a_{m} \vee b, \quad \neg b \vee c_{1} \vee \cdots \vee c_{n}}{a_{1} \vee \cdots \vee a_{m} \vee c_{1} \vee \cdots \vee c_{n}}
$$

Resolution

Algorithm Overview

function PL-RESOLUTION?(KB, α) returns true or false
We want to prove that KB entails α
In other words, we want to prove that we cannot satisfy (KB and not α)

1. Start with a set of CNF clauses, including the KB as well as $\neg \alpha$
2. Keep resolving pairs of clauses until
A. You resolve the empty clause

Contradiction found!
KB $\wedge \neg \alpha$ cannot be satisfied
Return true, KB entails α
B. No new clauses added

Return false, KB does not entail α

Resolution

Example trying to prove $\neg P_{1,2}$

$$
\begin{aligned}
& \text { General Resolution } \\
& \qquad \frac{a_{1} \vee \cdots \vee a_{m} \vee b, \quad \neg b \vee c_{1} \vee \cdots \vee c_{n}}{a_{1} \vee \cdots \vee a_{m} \vee c_{1} \vee \cdots \vee c_{n}}
\end{aligned}
$$

Knowledge Base

$$
\neg P_{2,1} \vee B_{1,1} \quad \neg \neg B_{1,1} \vee P_{1,2} \vee P_{2,1} \quad \neg P_{1,2} \vee B_{1,1} \quad \begin{array}{|}
& \square B_{1,1} \\
\hline
\end{array} \quad \begin{array}{|}
\\
\hline
\end{array}
$$

Resolution

Example trying to prove $\neg P_{1,2}$

Knowledge Base

Resolution

function PL-RESOLUTION?(KB, α) returns true or false clauses \leftarrow the set of clauses in the CNF representation of $\mathrm{KB} \wedge \neg \alpha$ new $\leftarrow\}$
loop do
for each pair of clauses C_{i}, C_{j} in clauses do
resolvents $\leftarrow \operatorname{PL-RESOLVE}\left(C_{i}, C_{j}\right)$
if resolvents contains the empty clause then return true
new \leftarrow new \cup resolvants
if new \subseteq clauses then
return false
clauses \leftarrow clauses \cup new

Properties

Forward Chaining is:

- Sound and complete for definite-clause KBs
- Complexity: linear time

Resolution is:

- Sound and complete for any PL KBs!
- Complexity: exponential time ${ }^{2}$

Poll 4

The regions below visually enclose the set of models that satisfy the respective sentence γ or δ. For which of the following diagrams is the sentence $\gamma \wedge \delta$ satisfiable? Select all that apply.

Poll 5

The regions below visually enclose the set of models that satisfy the respective sentence γ or δ. For which of the following diagrams does γ entail δ ? Select all that apply.

Satisfiability and Entailment

A sentence is satisfiable if it is true in at least one world (e.g., CSPs!)
Suppose we have a hyper-efficient SAT solver; how can we use it to test entailment?

- Suppose $\alpha \mid=\beta$
- Then $\alpha \Rightarrow \beta$ is true in all worlds
- Hence $\neg(\alpha \Rightarrow \beta)$ is false in all worlds
- Hence $\alpha \wedge \neg \beta$ is false in all worlds, i.e., unsatisfiable

So, add the negated conclusion to what you know, test for (un)satisfiability; also known as reductio ad absurdum

Efficient SAT solvers operate on conjunctive normal form

Satisfiability and Entailment

http://thiagodnf.github.io/wumpus-world-simulator/

Conjunctive Normal Form (CNF)

Every sentence can be expressed Replace biconditional by two implications
Each clause is a disjunction of literal

$$
\text { Replace } \alpha \Rightarrow \beta \text { by } \neg \alpha \vee \beta
$$

Each literal is a symbol or a ne, asyba' Distribute vover \wedge
Conversion to CNF by a seraence andard transtory

- At_1,1_0 $\Rightarrow($ Wall_0,1 \Leftrightarrow Blocy a_W_0)
- At_1,1_0 $\Rightarrow\left(\left(\right.\right.$ Wall_0,1 \Rightarrow Blocked_W_0) $\wedge\left(\right.$ Bloc $-a_{-} W _0 \Rightarrow$ Wall_0,1) $)$
- \neg At_1,1_0 v ((\neg Wall_0,1 v Blocked_W_0) ^ (\neg Blocked_W_0 v Wall_0,1))
- (\neg At_1,1_0 v \neg Wall_0,1 v Blocked_W_0) $\wedge\left(\neg A t _1,1 _0 \quad v ~ \neg\right.$ Blocked_W_0 v Wall_0,1)

Efficient SAT solvers

DPLL (Davis-Putnam-Logemann-Loveland) is the core of modern solvers

Essentially a backtracking search over models with some extras:

- Early termination: stop if
- all clauses are satisfied; e.g., $(A \vee B) \wedge(A \vee \neg C)$ is satisfied by $\{A=t r u e\}$
- any clause is falsified; e.g., $(A \vee B) \wedge(A \vee \neg C)$ is falsified by $\{A=f a l s e, B=f a l s e\}$
- Pure literals: if all occurrences of a symbol in as-yet-unsatisfied clauses have the same sign, then give the symbol that value
- E.g., A is pure and positive in $(A \vee B) \wedge(A \vee \neg C) \wedge(C \vee \neg B)$ so set it to true
- Unit clauses: if a clause is left with a single literal, set symbol to satisfy clause
- E.g., if $A=$ false, $(A \vee B) \wedge(A \vee \neg C)$ becomes (false $\vee B) \wedge($ false $\vee \neg C)$, i.e. $(B) \wedge(\neg C)$
- Satisfying the unit clauses often leads to further propagation, new unit clauses, etc.

DPLL algorithm

function DPLL(clauses, symbols, model) returns true or false if every clause in clauses is true in model then return true if some clause in clauses is false in model then return false

P, value \leftarrow FIND-PURE-SYMBOL(symbols, clauses, model) if P is non-null then return $\operatorname{DPLL}($ clauses, symbols $-P$, modelU\{P=value\})
P, value \leftarrow FIND-UNIT-CLAUSE(clauses, model) if P is non-null then return $\operatorname{DPLL}($ clauses, symbols $-P$, modelU\{ $P=$ value $\})$
$\mathrm{P} \leftarrow$ First(symbols)
rest \leftarrow Rest(symbols)
return or(DPLL(clauses, rest, modelU\{P=true\}),
DPLL(clauses, rest, modelU\{P=false\}))

Planning as Satisfiability

Given a hyper-efficient SAT solver, can we use it to make plans?
Yes, for fully observable, deterministic case: planning problem is solvable iff there is some satisfying assignment for actions etc.

SCORE: 0

Planning as Satisfiability

Given a hyper-efficient SAT solver, can we use it to make plans? Yes, for fully observable, deterministic case: planning problem is solvable iff there is some satisfying assignment for actions etc.

For $\mathrm{T}=1$ to infinity, set up the KB as follows and run SAT solver:

- Initial state, domain constraints
- Transition model sentences up to time T
- Goal is true at time T
- Precondition axioms: At_1,1_0 $\wedge \mathrm{N} _0 \Rightarrow \neg$ Wall_1,2 etc.
- Action exclusion axioms: $\neg\left(N _0 \wedge W _0\right) \wedge \neg\left(N _0 \wedge S _0\right) \wedge$.. etc.

Initial State

The agent may know its initial location:

- At_1,1_0

Or, it may not:

- At_1,1_0 v At_1,2_0 v At_1,3_0 v ... v At_3,3_0

We also need a domain constraint - cannot be in two places at once!

- $\neg\left(\right.$ At_1,1_0 \wedge At_1,2_0) $\wedge \neg\left(A t _1,1 _0 \wedge\right.$ At_1,3_0) $\wedge ~ . . . ~$
- $\neg\left(A t _1,1 _1 \wedge\right.$ At_1,2_1) $\wedge \neg\left(A t _1,1 _1 \wedge\right.$ At_1,3_1) $\wedge . .$.
- ...

Fluents and Effect Axioms

A fluent is a state variable that changes over time
How does each state variable or fluent at each time gets its value?
Fluents for PL Pacman are Pacman_x,y_t, e.g., Pacman _3,3_17

Fluents and Successor-state Axioms

A fluent is a state variable that changes over time
How does each state variable or fluent at each time gets its value?
Fluents for PL Pacman are Pacman_x,y_t, e.g., Pacman _3,3_17
A state variable gets its value according to a successor-state axiom

- $\mathrm{X}_{\mathrm{t}} \Leftrightarrow\left[\mathrm{X}_{\mathrm{t}-1} \wedge \neg\right.$ (some action $_{\mathrm{t}-1}$ made it false) $] \vee$
$\left[\neg \mathrm{X}_{\mathrm{t}-1} \wedge\right.$ (some action $\mathrm{t}_{\mathrm{t}-1}$ made it true) $]$

Fluents and Successor-state Axioms

Write the successor-state axiom for pacman's location

Planning as Satisfiability

For $\mathrm{T}=1$ to infinity, set up the KB as follows and run SAT solver:

- Initial state, domain constraints
- Transition model sentences up to time T
- Goal is true at time T

Why?
If I can find a satisfying set of variables that meet the constraints, then I have also found a plan as the set of action variables.

EXTRA SLIDES

Logical Agent Vocab

Model

- Complete assignment of symbols to True/False

Sentence

- Logical statement
- Composition of logic symbols and operators

KB

- Collection of sentences representing facts and rules we know about the world

Query

- Sentence we want to know if it is provably True, provably False, or unsure.

Entailment

Does the knowledge base entail my query?

- Query 1: $\neg P[1,2]$
- Query 2: $\neg P[2,2]$

Provably True, Provably False, or Unsure

http://thiagodnf.github.io/wumpus-world-simulator/

Logical Agent Vocab

Entailment

- Input: sentence1, sentence2
- Each model that satisfies sentence1 must also satisfy sentence2
- "If I know 1 holds, then I know 2 holds"
- (ASK), TT-ENTAILS, FC-ENTAILS, RESOLUTION-ENTAILS

Satisfy

- Input: model, sentence
- Is this sentence true in this model?
- Does this model satisfy this sentence
- "Does this particular state of the world work?'
- PL-TRUE

Logical Agent Vocab

Satisfiable

- Input: sentence
- Can find at least one model that satisfies this sentence
- (We often want to know what that model is)
- "Is it possible to make this sentence true?"
- DPLL

Valid

- Input: sentence
- sentence is true in all possible models

