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Logistics

o HW 5 due today (Oct 10th)
o P3 checkpoint due Oct 13th
o Mid-semester feedback - please fill out!

o Fall break next week!



Non-Deterministic Search
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Example: Grid World

A maze-like problem
= The agent lives in a grid
=  Walls block the agent’s path

Noisy movement: actions do not always go as planned

= 80% of the time, the action North takes the agent North
(if there is no wall there)

= 10% of the time, North takes the agent West; 10% East

= [If there is a wall in the direction the agent would have
been taken, the agent stays put

The agent receives rewards
= Small “living” reward each step (can be negative)

= Big rewards come at the end (good or bad)

Goal: maximize sum of rewards
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Markov Decision Processes

o An MDP is defined by:
O Asetofstatess& S
O A setof actionsa& A

o A transition function T(s, a, s”)
o Probability that a from s leads to s’, i.e., P(s"| s, a)
o Also called the model or the dynamics

o A reward function R(s, a, s")
o Sometimes just R(s) or R(s")

O A start state

o Maybe a terminal state




What is Markov about MDPs?

“Markov” generally means that given the present state, the future and
the past are independent

For Markov decision processes, “Markov” means action outcomes
depend only on the current state

P(St—i—l — Sl\St = 5¢, Ay = a¢, St—1 = 5¢—1, Ar—1,...50 = So)

’ Andrey Markov
P(Si41 = 8|St = 51, Ay = ay) (1856-1922)

This is just like search, where the successor function could only depend
on the current state (not the history)
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Policies

o In deterministic single-agent search
problems, we wanted an optimal plan, or
sequence of actions, from start to a goal

© For MDPs, we want an optimal

policy &*: S — A
o A policy &t gives an action for each state

O An optimal policy is one that maximizes Optimal policy when R(s, a, ') =
expected utility if followed -0.4 for all non-terminals s



Optimal Policies

R(s) =-0.01




Poll: Optimal Policy for Ditferent Rewards

What is the optimal

policy for living reward
R(s) =-2.0

A=[=]r
(A)

The others correspond to
R(s) =-0.01, R(s) =-0.03,
R(s) =-0.4
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Poll: Optimal Policy for Ditferent Rewards

\?fha’; is iche optimal ) === ===
policy for living rewar
N Ennoss

(A) (B)
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(C) (D)

The others correspond to
R(s) =-0.01, R(s) =-0.03,
R(s) =-0.4
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Utilities of Sequences

0 What preferences should an agent have over reward sequences?

o More or less? [1,2,2] or [2,3, 4]

© Now or later?[0,0,1] or [1,0,0] @

S

| N




Discounting

o It’'s reasonable to maximize the sum of rewards
O It’s also reasonable to prefer rewards now to rewards later

© One solution: values of rewards decay exponentially

Example: discount ot 0.5
U([1,2,3]) = 1*1 + 0.5*2 + 0.25*3
U([1,23]) < U([3,21])
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Discounting

o It’'s reasonable to maximize the sum of rewards
O It’s also reasonable to prefer rewards now to rewards later

© One solution: yvalues of rewards decay exponentially

© 9
2
1 8l i
Worth Now Worth Next Step Worth In Two Steps

Example: discount ot 0.5
U([1,2,3]) = 1*1 + 0.5*2 + 0.25*3
U([1,2,3]) < U([3,2,1])



Poll: Discounting

o (Given: 10 1
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o Actions: East, West, and Exit (only available in exit states a, e)

O Transitions: deterministic
(i)
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3. Fory=0.1, optimal policy is (i) 10

4. Fory=0.1, optimal policy is (ii)
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Poll: Discounting

o (Given: 10

1

a b C

d

e

o Actions: East, West, and Exit (only available in exit states a, e)

O Transitions: deterministic

Fory =1, optimal policy is (i)
Fory=1, optimal policy is (ii)
Fory=0.1, optimal policy is (i)

= o=

Fory=0.1, optimal policy is (ii)
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O A robot car wants to travel far, quickly

o Three states: Cool, Warm, Overheated

o Two actions: Slow, Fast 0.5

Overheated
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Example: Racing

A robot car wants to travel far, quickly
Three states: Cool, Warm, Overheated

Two actions: Slow, Fast 0.5

Going faster gets double reward

Overheated



Racing Search Tree




MDP Search Trees

o Each MDP state projects an expectimax-like search tree

As —eeee 5 i3 a state

P (s,a,s)called a
transition

T(s,a,s’) = P(s’ I s,a)
R(s,a,s”)




Solving MDPs




Finding Optimal Policy

o Expectimax algorithm! (studied in search module)

Time: 20 min 30 min
X

Probability: 0.25

Chance node notation
> [PGH V(s

SI

Vis) =
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Racing Search Tree
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Racing Search Tree

o We're doing way too much work &
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with expectimax! (P‘ /\‘
. 4
e &

o Problem: States are repeated
O Idea: Only compute needed ?‘

quantities once

d & & &
O Problem: Tree goes on forever fl fl fl fl

o Idea: Do a depth-limited L L e b

computation, but with increasing '
depths until change is small
o Note: deep parts of the tree

eventually don’t matterif y <1 CIE TR TRE Tt T TR



Recap: Detining MDPs

© Markov decision processes:
o Set of states S
o Start state s,

o Set of actions A
o Transitions P(s’ | s,a) (or T(s,a,s’))
o Rewards R(s,a,s”) (and discount vy)

© MDP quantities so far:
o Policy = Choice of action for each state
o Utility = sum of (discounted) rewards



Optimal Quantities

= The value (utility) of a state s:
V*(s) = expected utility starting in s
and acting optimally

= The value (utility) of a g-state (s,a):

Q’(s,a) = expected utility starting
out having taken action a from
state s and (thereafter) acting
optimally

= The optimal policy:
t'(s) = optimal action from state s

S 1S a
state

(s,a)is a
g-state

(s,a,8")is a
transition



Relationship b/w Optimal Quantities

o V*(s) in terms of Q*(s, a)
o0 Q*(s, a) in terms of V*(s)

o rt'(s) in terms of Q*(s, a)

26



Gridworld V™ Values

Noise = 0.2
Discount = 0.9
Living reward = 0



Gridworld Q* Values
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Relationship b/w Optimal Quantities

o V*(s) in terms of Q*(s, a)
o0 Q*(s, a) in terms of V*(s)
o rt'(s) in terms of Q*(s, a)

O Recursive definition for V*

29
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Time-Limited Values

o Key idea: time-limited values

o Define V,(s) to be the optimal value of s if the

game ends in k more time steps

o Equivalently, it’s what a depth-k expectimax would give

from s
é Va(@ )
7 i j>
A = S
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k=5

Cridworld Display
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k=12

Cridworld Display
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k=100

Gridworld Display

VALUES AFTER 100 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward = 0
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Computing Time-Limited Values
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Computing Time-Limited Values
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Computing Time-Limited Values
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Value Iteration

Start with V,(s) = 0: no time steps left means an expected reward sum of zero

Given vector of V,(s) values, do one play of expectimax from each state:

Viet1(s) < mC?XZT(S,a, s") {R(s,a, s + ’VV]C(S/)}

Repeat until convergence, which yields V*

Complexity of each iteration: O(S2A)

Theorem: will converge to unique optimal values
o Basic idea: approximations get refined towards optimal values




Example: Value Iteration

f &,

Overheated

Assume no discount!
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Overheated

Assume no discount!
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Example: Value Iteration
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S: 1+2=3

Assume no discount!
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Example: Value Iteration

Assume no discount!

: [ 0 0 0] Vir1(s)  max Y T(s,a,8) [R(s,a,s) + 1 Vi(s)]

S




Discounting

o How to discount?

o Each time we descend a level, we
multiply in the discount once

o Why discount?
o Reward now is better than later

o Can also think ofitasa 1 — y chance of
ending the process at every step

o Also helps our algorithms converge
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Convergence”

o How do we know the V, vectors are going to

converge? (assuming 0 <y < 1)

o Proof Sketch:

©)

For any state V, and V,,, can be viewed as depth k+1
expectimax results in nearly identical search trees
The difference is that on the bottom layer, V,,, has actual

rewards while V, has zeros
That last layer is at best all Ry,
It is at worst Ry

But everything is discounted by vk that far out

So 'V, and V,,, are at most yk max | R | different

So as k increases, the values converge

Vit1(s)

\ £/




Next Lecture: Policy-Based Methods

Policies may converge long before values do



