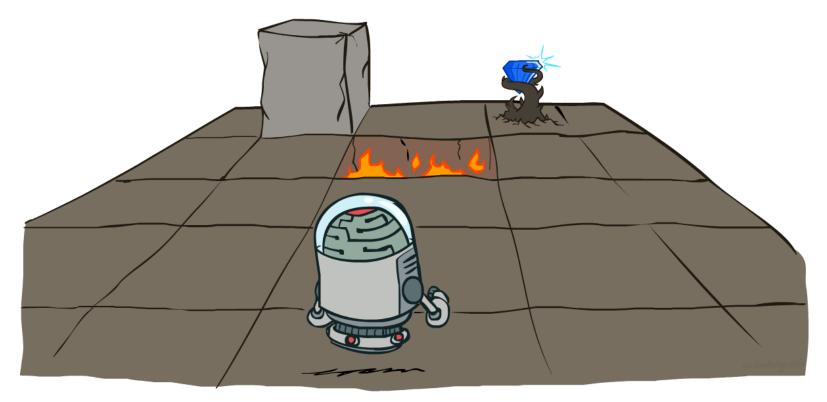
15-281 AI: Representation and Problem Solving Markov Decision Processes



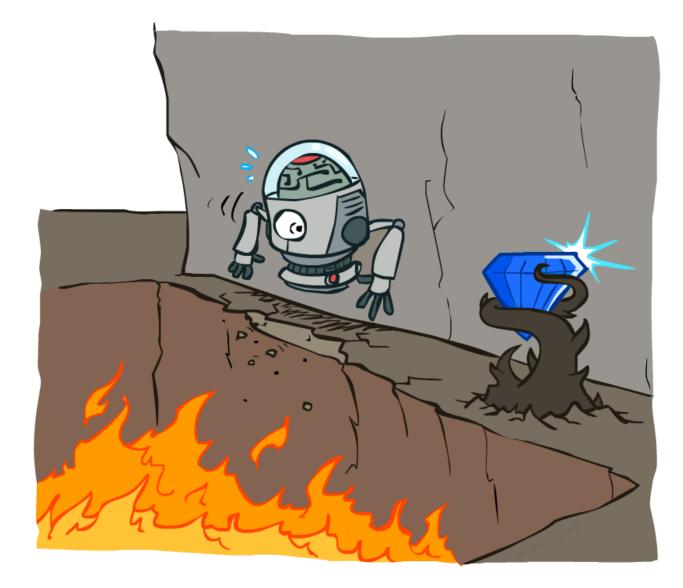
Instructors: Aditi Raghunathan and Vince Conitzer

Carnegie Mellon University

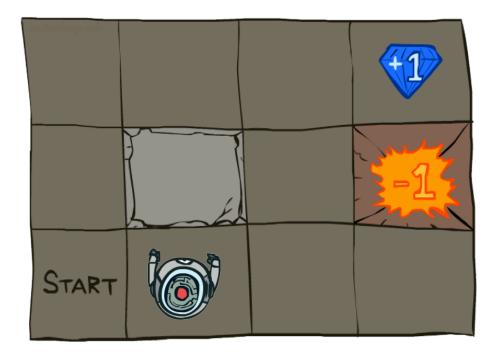
[These slides adapted from CMU AI and http://ai.berkeley.edu]

- HW 5 due today (Oct 10th)
- P3 checkpoint due Oct 13th
- Mid-semester feedback please fill out!
- Fall break next week!

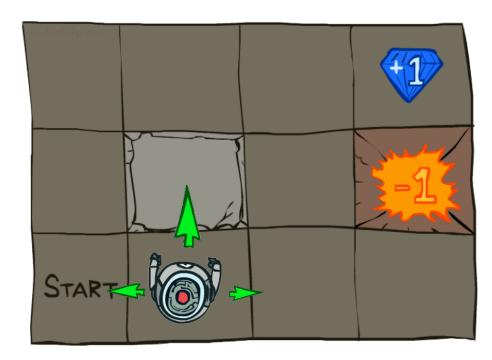
Non-Deterministic Search



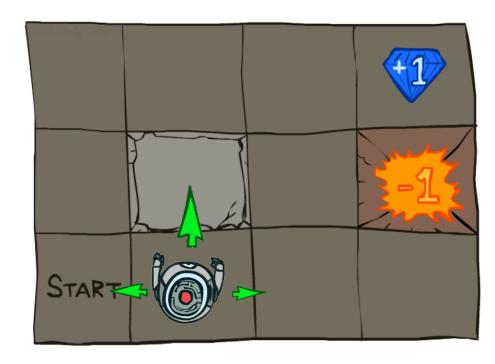
- A maze-like problem
 - The agent lives in a grid
 - Walls block the agent's path



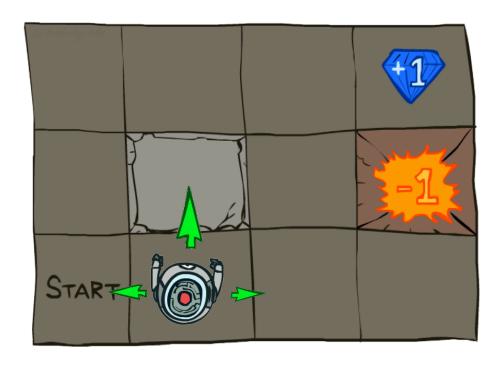
- A maze-like problem
 - The agent lives in a grid
 - Walls block the agent's path
- Noisy movement: actions do not always go as planned
 - 80% of the time, the action North takes the agent North (if there is no wall there)
 - 10% of the time, North takes the agent West; 10% East
 - If there is a wall in the direction the agent would have been taken, the agent stays put



- A maze-like problem
 - The agent lives in a grid
 - Walls block the agent's path
- Noisy movement: actions do not always go as planned
 - 80% of the time, the action North takes the agent North (if there is no wall there)
 - 10% of the time, North takes the agent West; 10% East
 - If there is a wall in the direction the agent would have been taken, the agent stays put
- The agent receives rewards
 - Small "living" reward each step (can be negative)
 - Big rewards come at the **end** (good or bad)

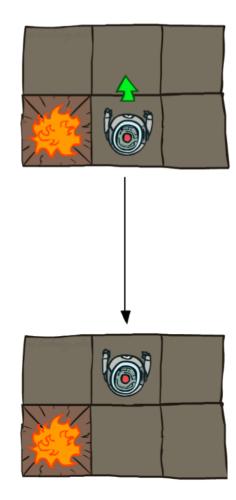


- A maze-like problem
 - The agent lives in a grid
 - Walls block the agent's path
- Noisy movement: actions do not always go as planned
 - 80% of the time, the action North takes the agent North (if there is no wall there)
 - 10% of the time, North takes the agent West; 10% East
 - If there is a wall in the direction the agent would have been taken, the agent stays put
- The agent receives rewards
 - Small "living" reward each step (can be negative)
 - Big rewards come at the **end** (good or bad)
- <u>Goal</u>: maximize sum of rewards



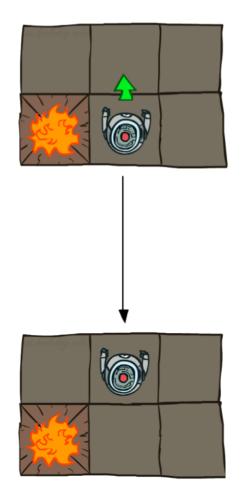
Grid World Actions

Deterministic Grid World

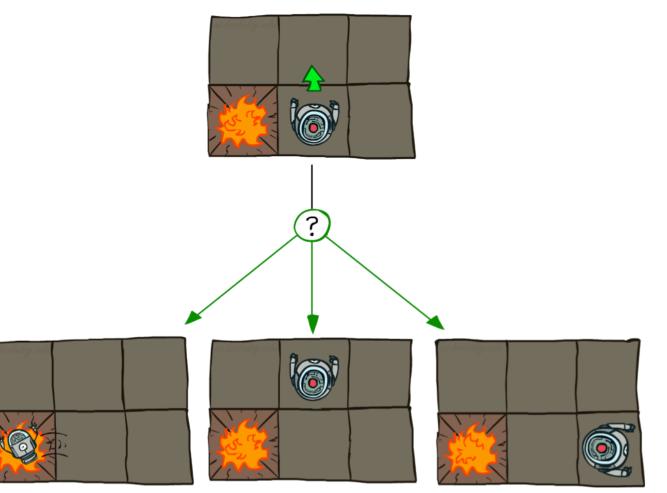


Grid World Actions

Deterministic Grid World

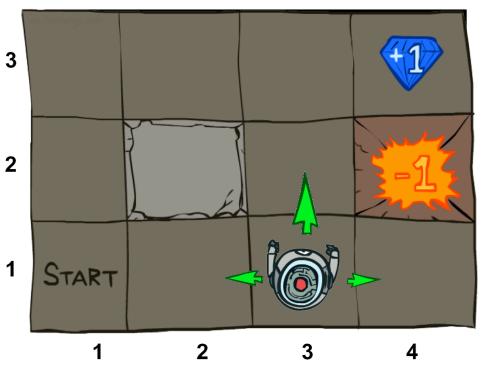


Stochastic Grid World



Markov Decision Processes

- An MDP is defined by:
 - \circ A set of states $s \in S$
 - A set of actions $a \in A$
 - A transition function T(s, a, s')
 - Probability that a from s leads to s', i.e., $P(s' \mid s, a)$
 - Also called the model or the dynamics
 - A reward function R(s, a, s')
 - Sometimes just R(s) or R(s')
 - A start state
 - Maybe a terminal state



What is Markov about MDPs?

- "Markov" generally means that given the present state, the future and the past are independent
- For Markov decision processes, "Markov" means action outcomes depend only on the current state

$$P(S_{t+1} = s' | S_t = s_t, A_t = a_t, S_{t-1} = s_{t-1}, A_{t-1}, \dots S_0 = s_0)$$

 $P(S_{t+1} = s' | S_t = s_t, A_t = a_t)$

• This is just like search, where the successor function could only depend on the current state (not the history)

Andrey Markov (1856-1922)

 In deterministic single-agent search problems, we wanted an optimal plan, or sequence of actions, from start to a goal

- In deterministic single-agent search problems, we wanted an optimal plan, or sequence of actions, from start to a goal
- For MDPs, we want an optimal

- In deterministic single-agent search problems, we wanted an optimal plan, or sequence of actions, from start to a goal
- For MDPs, we want an optimal policy $\pi^*: S \rightarrow A$

- In deterministic single-agent search problems, we wanted an optimal plan, or sequence of actions, from start to a goal
- For MDPs, we want an optimal

policy $\pi^*: S \to A$

 \circ A policy π gives an action for each state

- In deterministic single-agent search problems, we wanted an optimal plan, or sequence of actions, from start to a goal
- For MDPs, we want an optimal

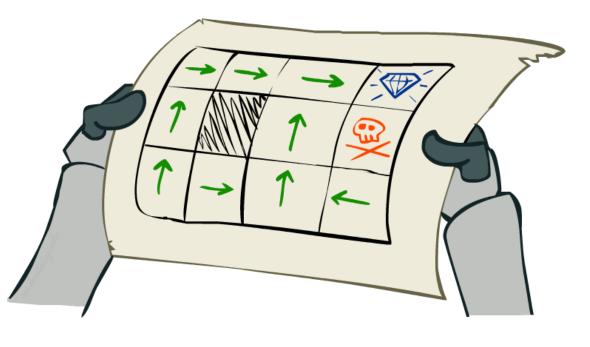
policy $\pi^*: S \rightarrow A$

- \circ A policy π gives an action for each state
- An optimal policy is one that maximizes expected utility if followed

- In deterministic single-agent search problems, we wanted an optimal plan, or sequence of actions, from start to a goal
- For MDPs, we want an optimal

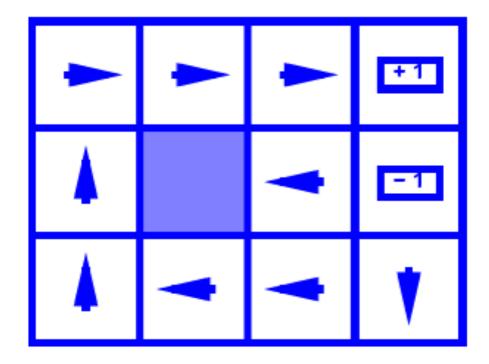
policy $\pi^*: S \to A$

- \circ A policy π gives an action for each state
- An optimal policy is one that maximizes expected utility if followed



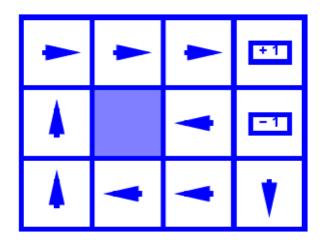
Optimal policy when R(s, a, s') = -0.4 for all non-terminals s

Optimal Policies



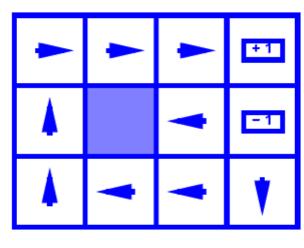
R(s) = -0.01

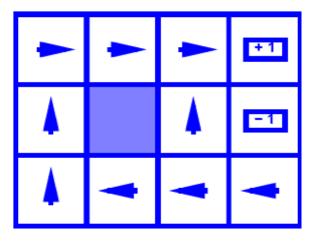
What is the optimal policy for living reward R(s) = -2.0



The others correspond to R(s) = -0.01, R(s) = -0.03,R(s) = -0.4 **(A)**

What is the optimal policy for living reward R(s) = -2.0

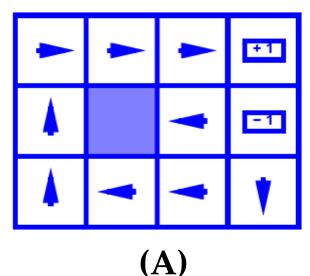


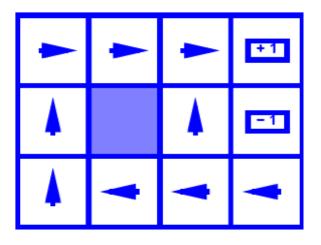


The others correspond to R(s) = -0.01, R(s) = -0.03,R(s) = -0.4 (A)

(B)

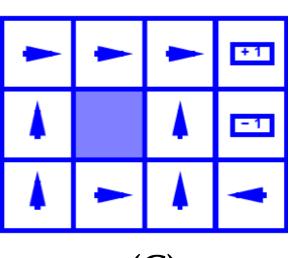
What is the optimal policy for living reward R(s) = -2.0



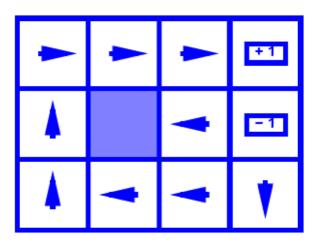


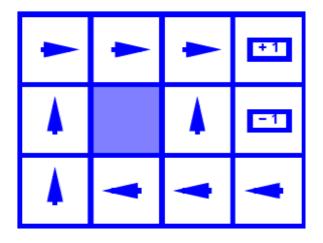
(B)

The others correspond to R(s) = -0.01, R(s) = -0.03,R(s) = -0.4

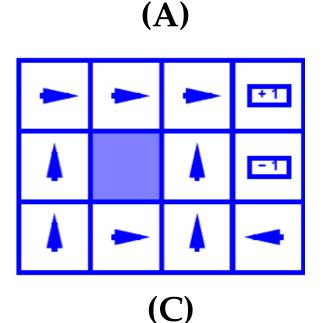


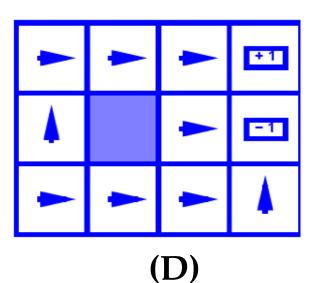
What is the optimal policy for living reward R(s) = -2.0



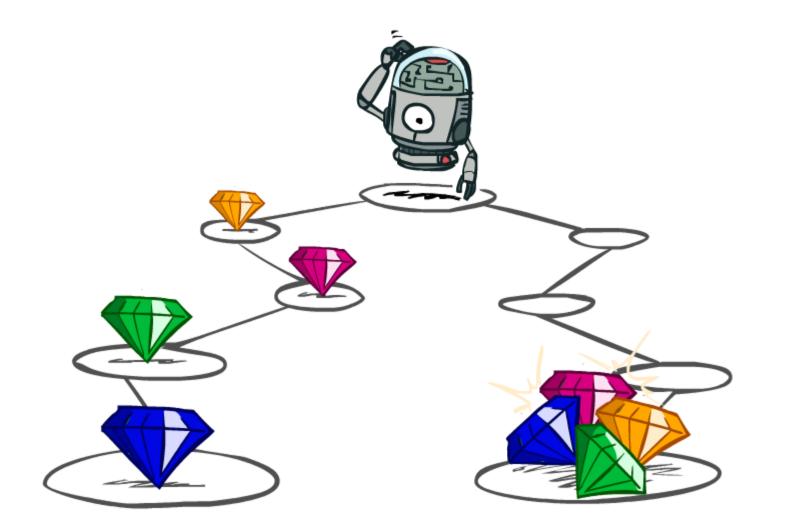


The others correspond to R(s) = -0.01, R(s) = -0.03,R(s) = -0.4

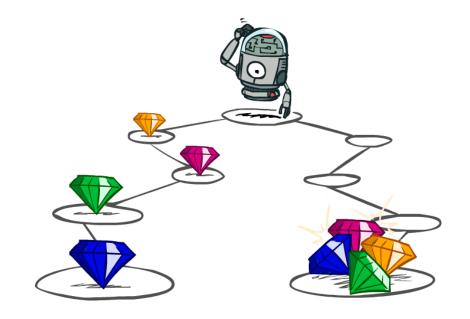




(B)

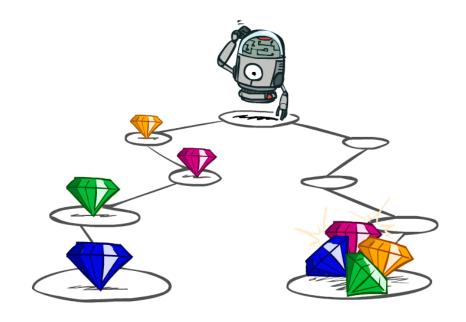


• What preferences should an agent have over reward sequences?



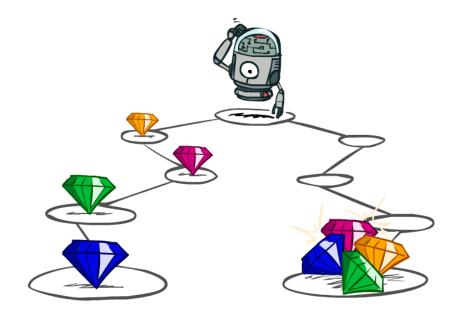
• What preferences should an agent have over reward sequences?

• More or less?



• What preferences should an agent have over reward sequences?

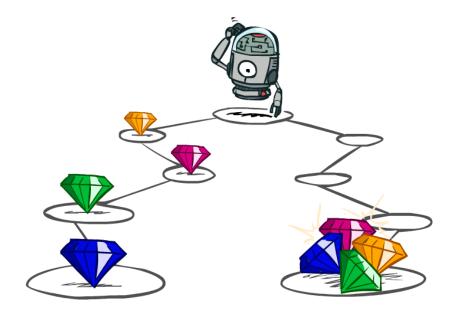
• More or less? [1, 2, 2] or [2, 3, 4]



• What preferences should an agent have over reward sequences?

• More or less? [1, 2, 2] or [2, 3, 4]

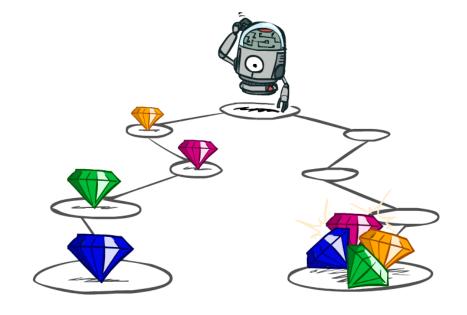
• Now or later?



• What preferences should an agent have over reward sequences?

• More or less? [1, 2, 2] or [2, 3, 4]

• Now or later? [0, 0, 1] or [1, 0, 0]



- It's reasonable to maximize the sum of rewards
- It's also reasonable to prefer rewards now to rewards later
- One solution: values of rewards decay exponentially

- It's reasonable to maximize the sum of rewards
- It's also reasonable to prefer rewards now to rewards later
- One solution: values of rewards decay exponentially

1

Worth Now

- It's reasonable to maximize the sum of rewards
- It's also reasonable to prefer rewards now to rewards later
- One solution: values of rewards decay exponentially

Worth Now

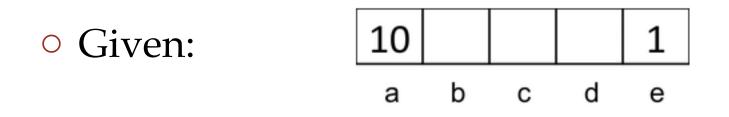
Worth Next Step

- It's reasonable to maximize the sum of rewards
- It's also reasonable to prefer rewards now to rewards later
- One solution: values of rewards decay exponentially

Worth Next Step

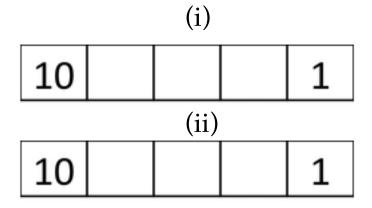
Worth In Two Steps

Poll: Discounting

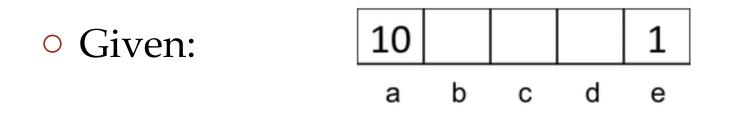


Actions: East, West, and Exit (only available in exit states a, e)
Transitions: deterministic

- 1. For $\gamma = 1$, optimal policy is (i)
- 2. For $\gamma = 1$, optimal policy is (ii)
- 3. For $\gamma = 0.1$, optimal policy is (i)
- 4. For $\gamma = 0.1$, optimal policy is (ii)

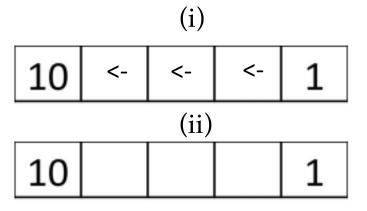


Poll: Discounting

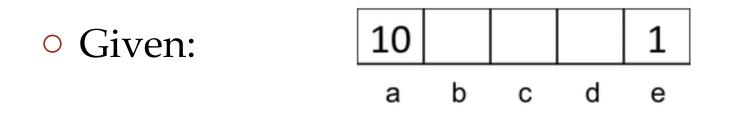


Actions: East, West, and Exit (only available in exit states a, e)
Transitions: deterministic

- 1. For $\gamma = 1$, optimal policy is (i)
- 2. For $\gamma = 1$, optimal policy is (ii)
- 3. For $\gamma = 0.1$, optimal policy is (i)
- 4. For $\gamma = 0.1$, optimal policy is (ii)

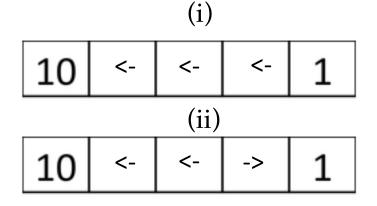


Poll: Discounting

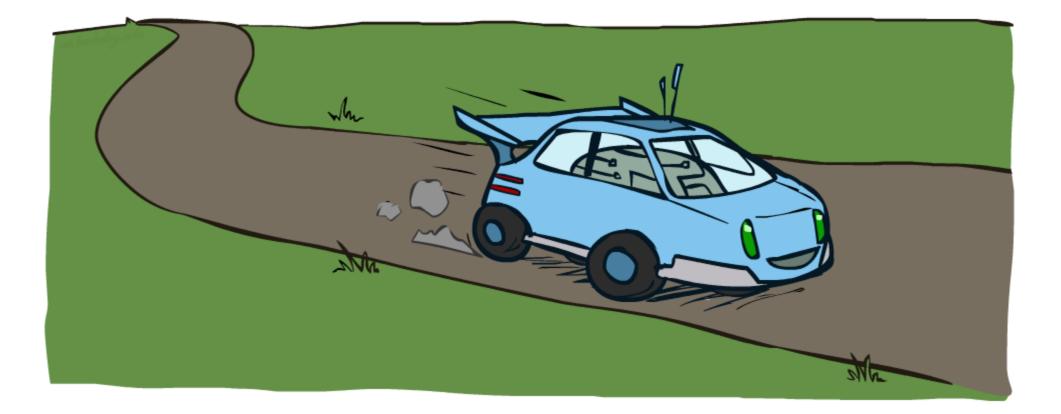


Actions: East, West, and Exit (only available in exit states a, e)
Transitions: deterministic

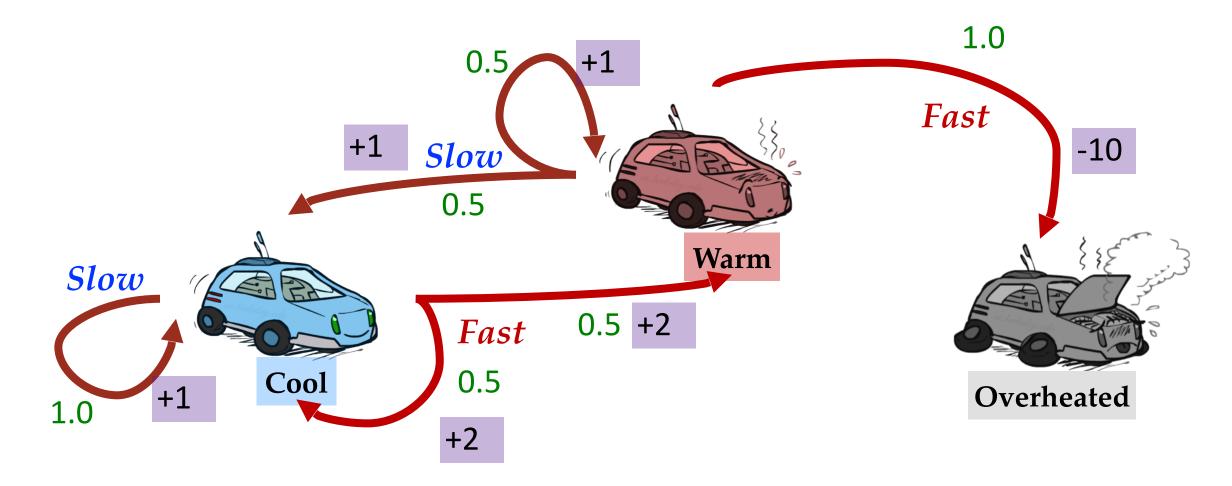
- 1. For $\gamma = 1$, optimal policy is (i)
- 2. For $\gamma = 1$, optimal policy is (ii)
- 3. For $\gamma = 0.1$, optimal policy is (i)
- 4. For $\gamma = 0.1$, optimal policy is (ii)



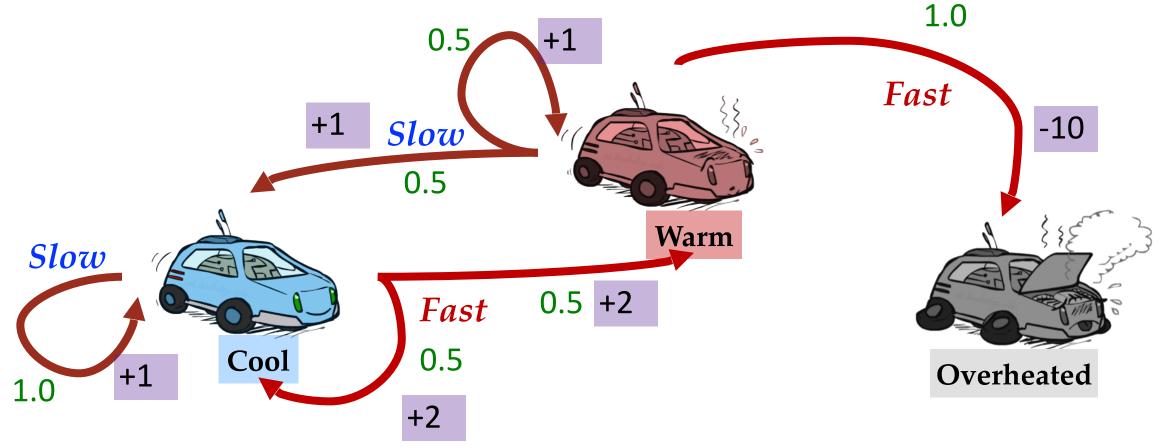
Example: Racing



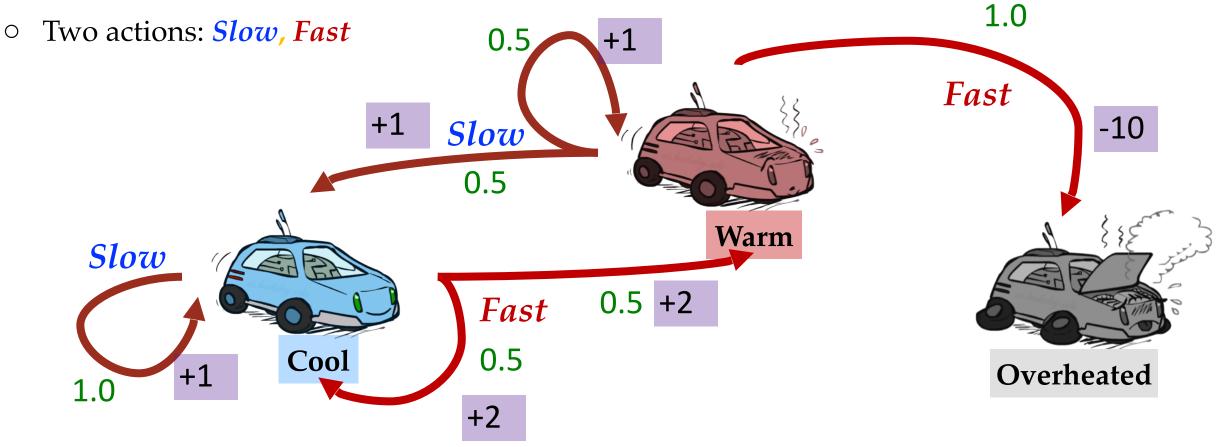
• A robot car wants to travel far, quickly

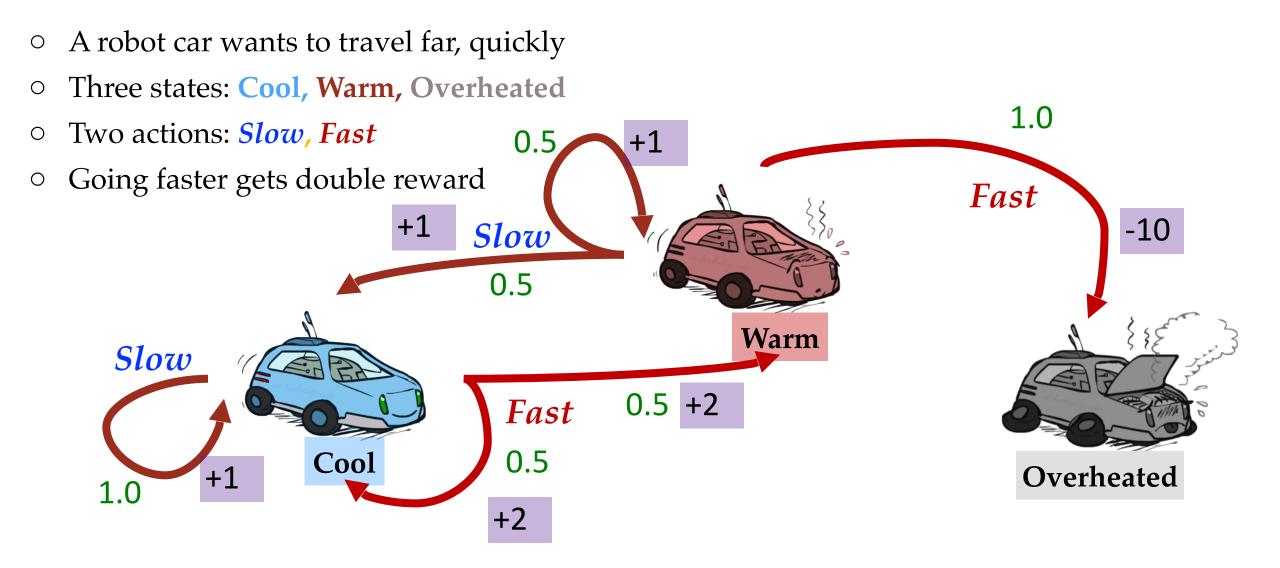


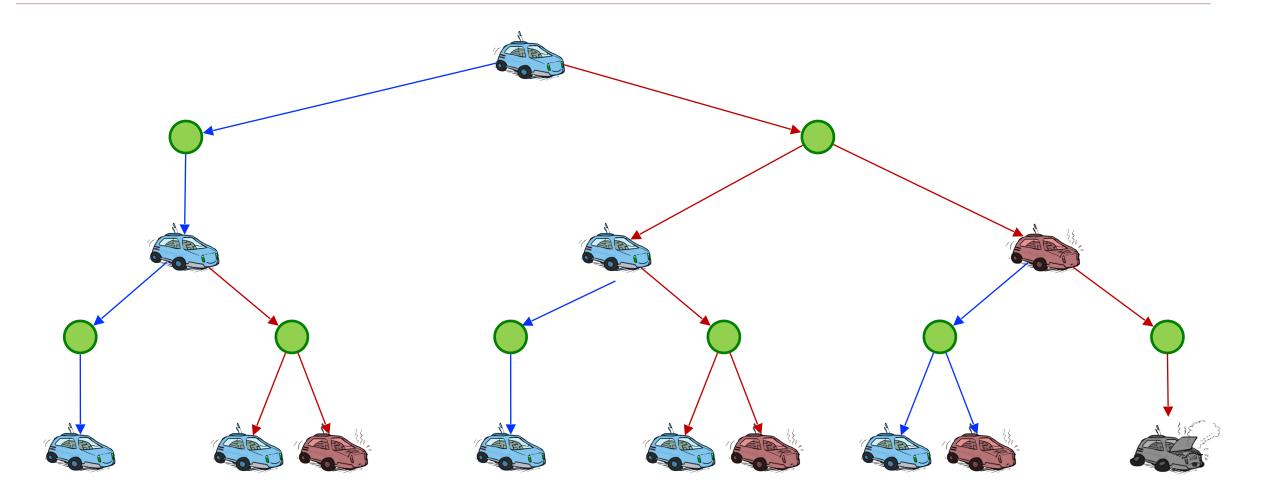
- A robot car wants to travel far, quickly
- Three states: Cool, Warm, Overheated



- A robot car wants to travel far, quickly
- Three states: Cool, Warm, Overheated

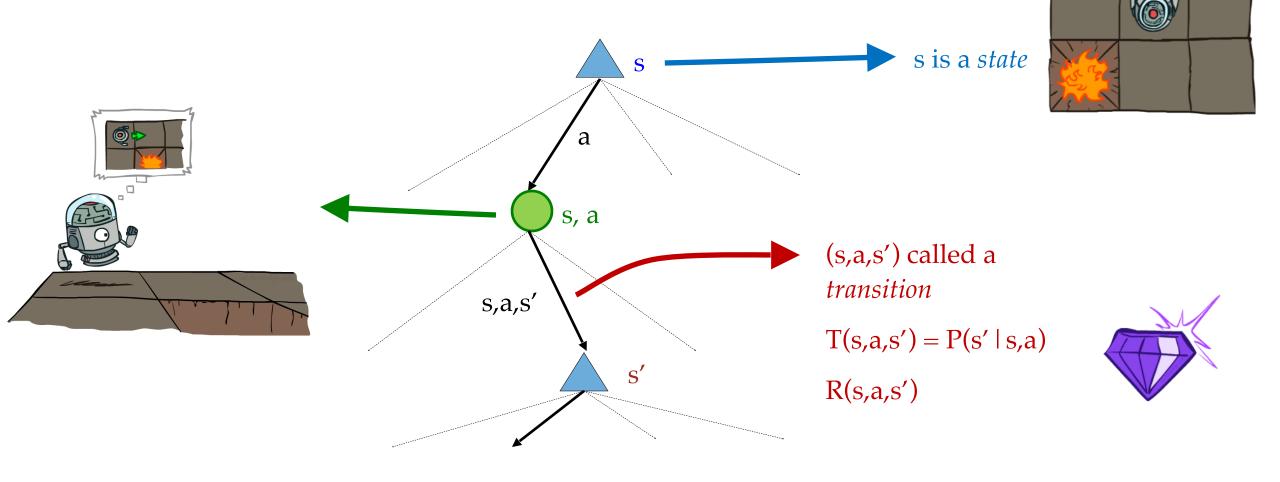




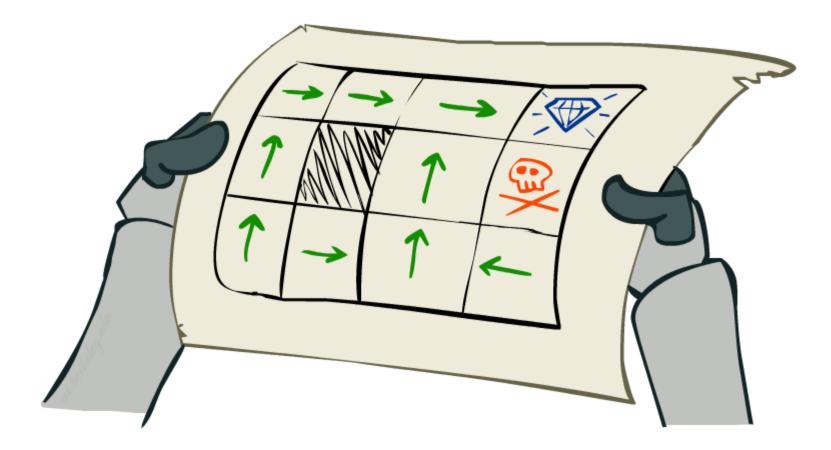


MDP Search Trees

• Each MDP state projects an expectimax-like search tree

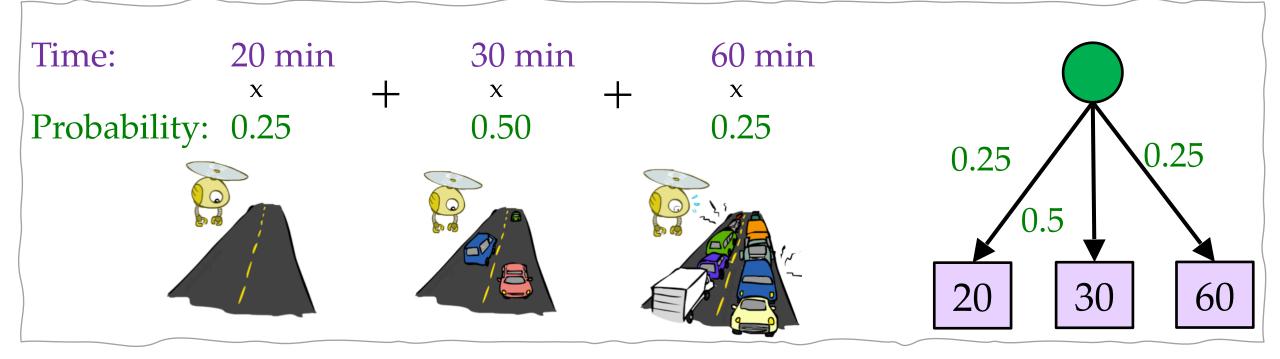


Solving MDPs

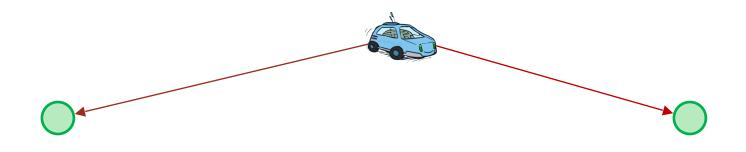


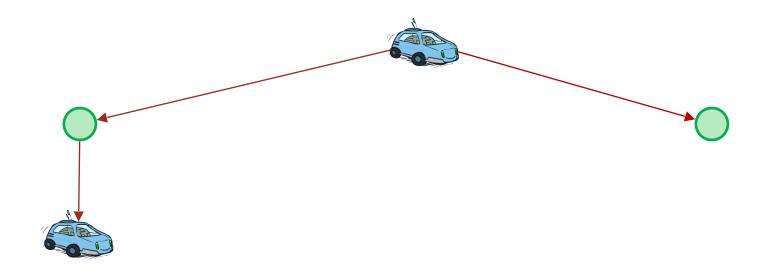
Finding Optimal Policy

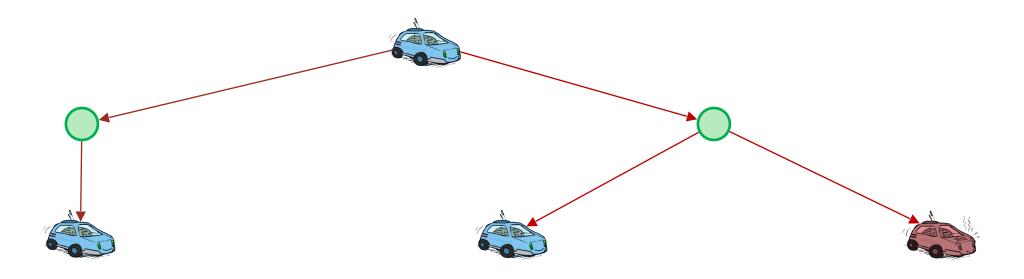
• Expectimax algorithm! (studied in search module)

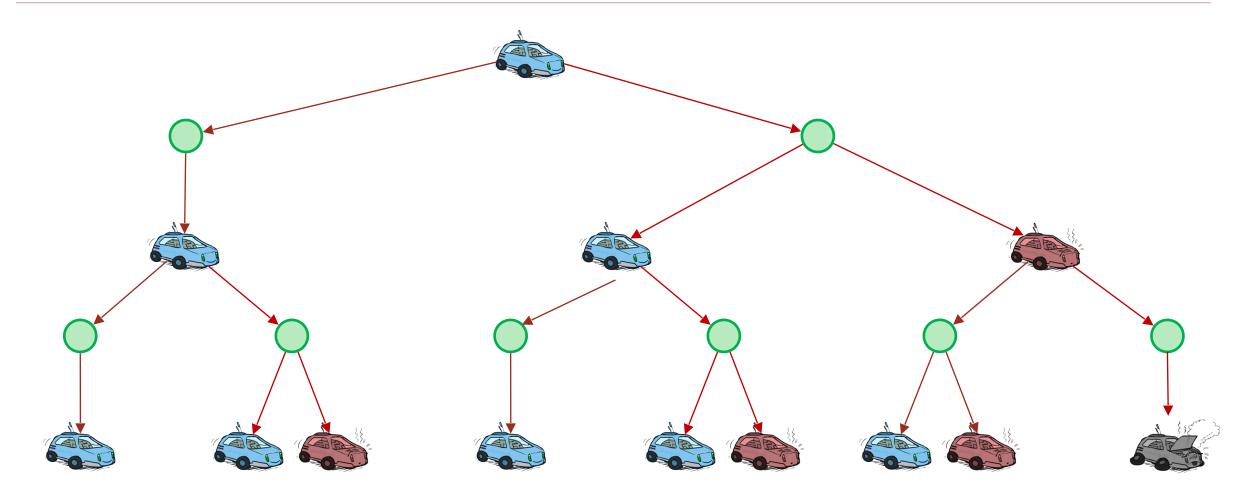


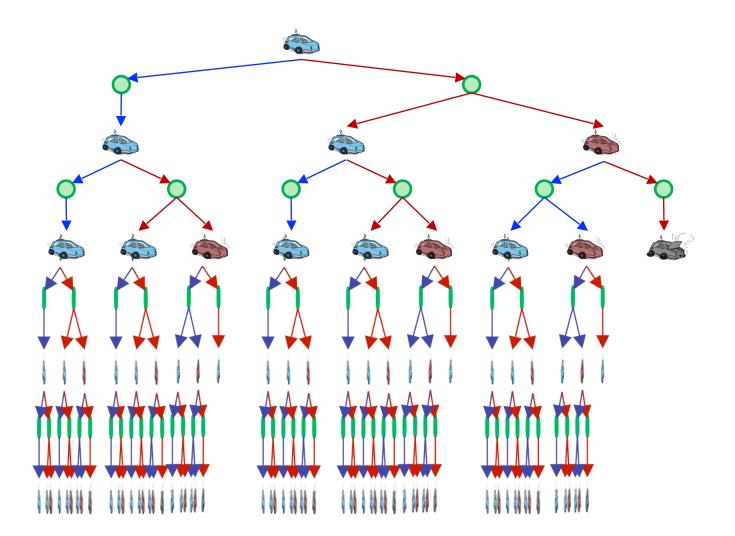
Chance node notation $V(s) = \sum_{s'} [P(s') V(s')]$

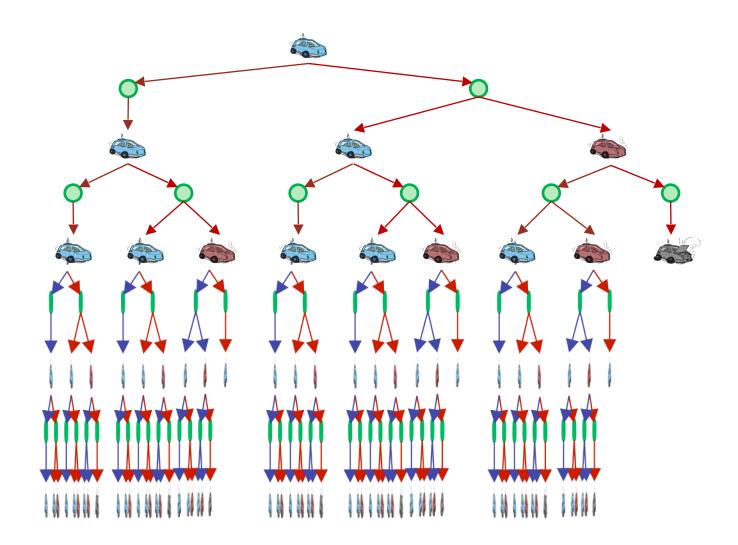




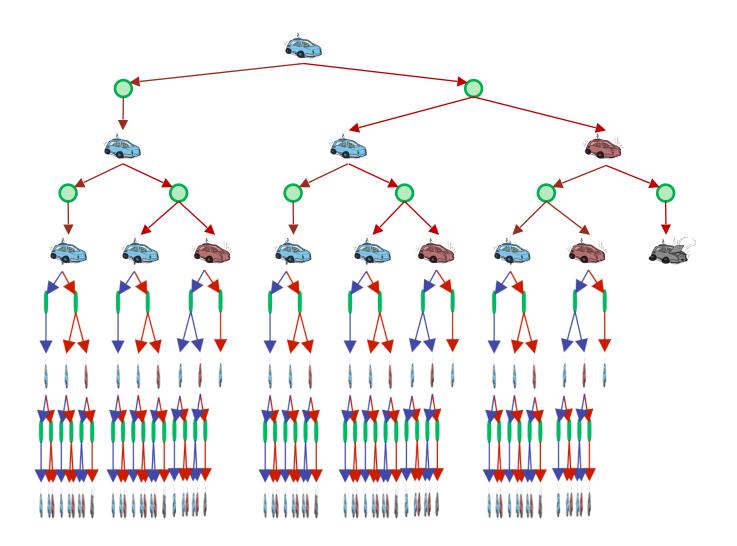




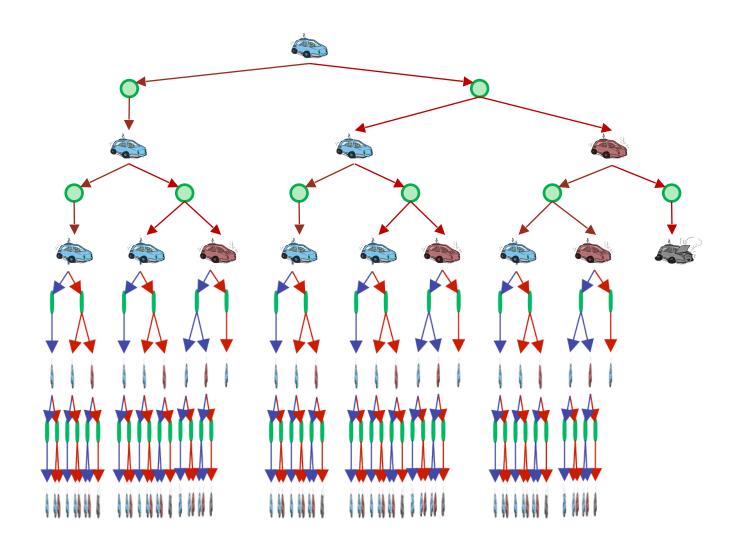




- We're doing way too much work with expectimax!
- Problem: States are repeated
 - Idea: Only compute needed quantities once



- We're doing way too much work with expectimax!
- Problem: States are repeated
 - Idea: Only compute needed quantities once
- Problem: Tree goes on forever
 - Idea: Do a depth-limited computation, but with increasing depths until change is small
 - Note: deep parts of the tree eventually don't matter if $\gamma < 1$



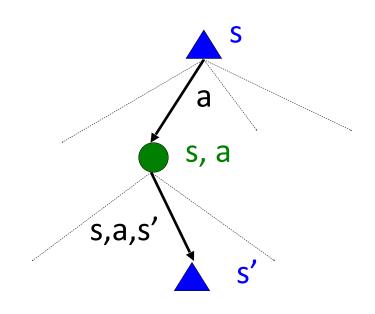
Recap: Defining MDPs

• Markov decision processes:

- Set of states S
- \circ Start state s₀
- Set of actions A
- Transitions P(s' | s,a) (or T(s,a,s'))
- \circ Rewards R(s,a,s') (and discount γ)

• MDP quantities so far:

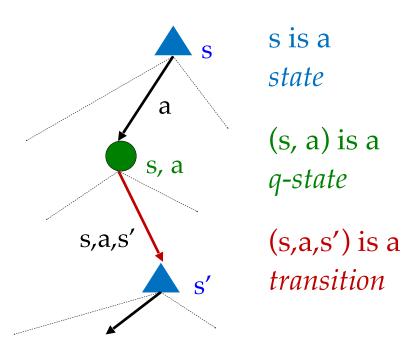
Policy = Choice of action for each stateUtility = sum of (discounted) rewards



Optimal Quantities

- The value (utility) of a state s: V*(s) = expected utility starting in s and acting optimally
- The value (utility) of a q-state (s,a):
 Q*(s,a) = expected utility starting out having taken action a from state s and (thereafter) acting optimally
- The optimal policy:

 $\pi^*(s) = optimal action from state s$

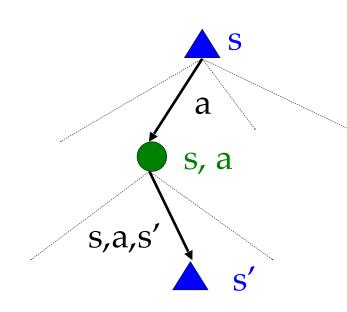


Relationship b/w Optimal Quantities

 \circ V*(s) in terms of Q*(s, a)

• Q*(s, a) in terms of V*(s)

 $\circ \pi^*(s)$ in terms of Q*(s, a)



Gridworld V* Values

000	Gridworl	d Display	
0.64 →	0.74 ▸	0.85)	1.00
^		^	
0.57		0.57	-1.00
^		^	
0.49	∢ 0.43	0.48	∢ 0.28

Gridworld Q* Values

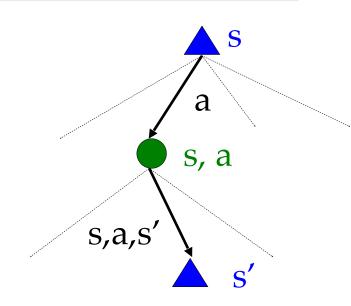
Relationship b/w Optimal Quantities

 \circ V*(s) in terms of Q*(s, a)

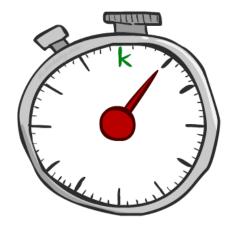
• Q*(s, a) in terms of V*(s)

 $\circ \pi^*(s)$ in terms of Q*(s, a)

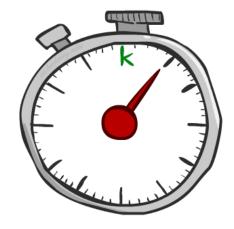
• Recursive definition for V*



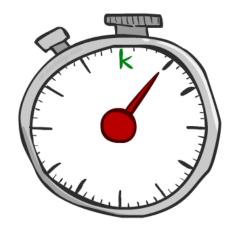
• Key idea: time-limited values



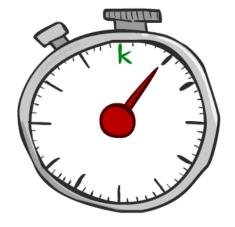
- Key idea: time-limited values
- Define V_k(s) to be the optimal value of s if the game ends in k more time steps



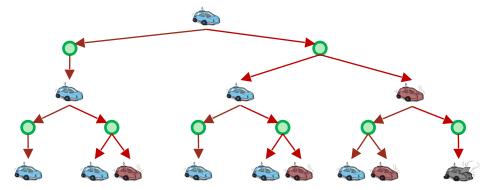
- Key idea: time-limited values
- Define V_k(s) to be the optimal value of s if the game ends in k more time steps
 - Equivalently, it's what a depth-k expectimax would give from s



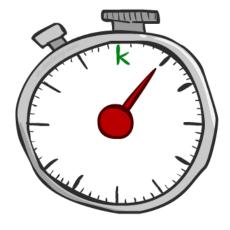
- Key idea: time-limited values
- Define V_k(s) to be the optimal value of s if the game ends in k more time steps



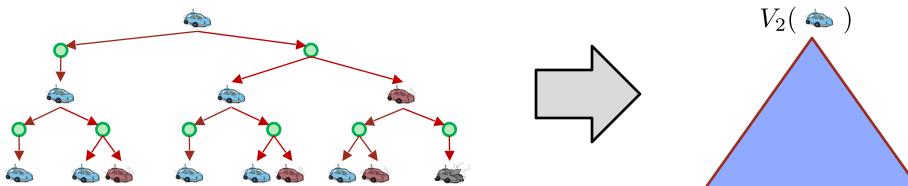
• Equivalently, it's what a depth-k expectimax would give from s



- Key idea: time-limited values
- Define V_k(s) to be the optimal value of s if the game ends in k more time steps



• Equivalently, it's what a depth-k expectimax would give from s



0 0	Gridworld Display			
	^	^	^	
	0.00	0.00	0.00	0.00
			^	
	0.00		0.00	0.00
	0.00	0.00	0.00	0.00

VALUES AFTER 0 ITERATIONS

000	Gridworld Display			
	▲ 0.00	• 0.00	0.00)	1.00
	• 0.00		∢ 0.00	-1.00
	• 0.00	•	• 0.00	0.00
	VALUES AFTER 1 ITERATIONS			

Gridworld Display			
•	0.00)	0.72 →	1.00
•		• 0.00	-1.00
•	• 0.00	• 0.00	0.00
VALUES AFTER 2 ITERATIONS			

000	C Cridworld Display			
	0.00 >	0.52 →	0.78 →	1.00
			^	
	0.00		0.43	-1.00
	•	^		
	0.00	0.00	0.00	0.00
				•
VALUES AFTER 3 ITERATIONS				

00	Gridworld Display			
	0.37 →	0.66)	0.83)	1.00
	• 0.00		• 0.51	-1.00
	• 0.00	0.00 →	• 0.31	∢ 0.00
	VALUES AFTER 4 ITERATIONS			

000	Gridworld Display				
0.51)	0.72)	0.84)	1.00		
• 0.27		• 0.55	-1.00		
•	0.22 →	• 0.37	∢ 0.13		
VALUES AFTER 5 ITERATIONS					

Gridworld Display			
0.59)	0.73 →	0.85)	1.00
• 0.41		• 0.57	-1.00
• 0.21	0.31 →	• 0.43	∢ 0.19
VALUES AFTER 6 ITERATIONS			

000	C Cridworld Display			
0.62 →	0.74 →	0.85)	1.00	
^		^		
0.50		0.57	-1.00	
^		^		
0.34	0.36 →	0.45	∢ 0.24	
VALUES AFTER 7 ITERATIONS				

Gridworld Display			
0.63)	0.74 →	0.85)	1.00
^		^	
0.53		0.57	-1.00
• 0.42	0.39 →	• 0.46	∢ 0.26
VALUES AFTER 8 ITERATIONS			

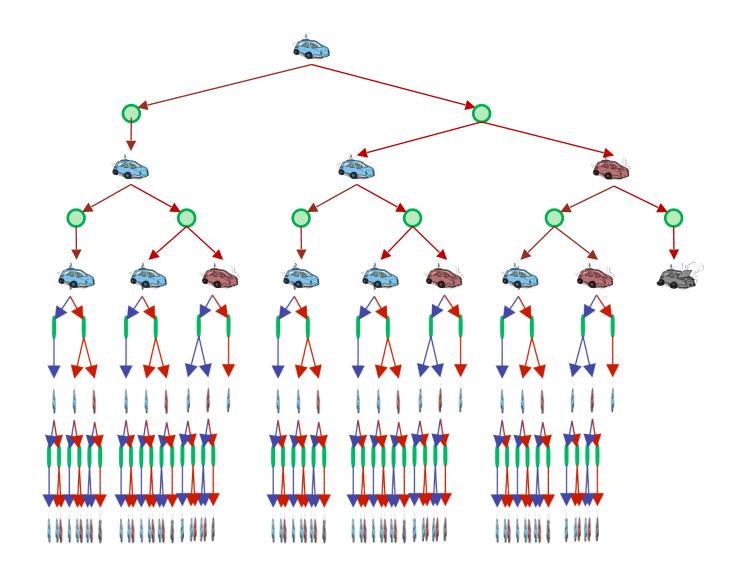
C Cridworld Display			
0.64)	0.74 →	0.85)	1.00
• 0.55		• 0.57	-1.00
• 0.46	0.40 →	• 0.47	∢ 0.27
VALUES AFTER 9 ITERATIONS			

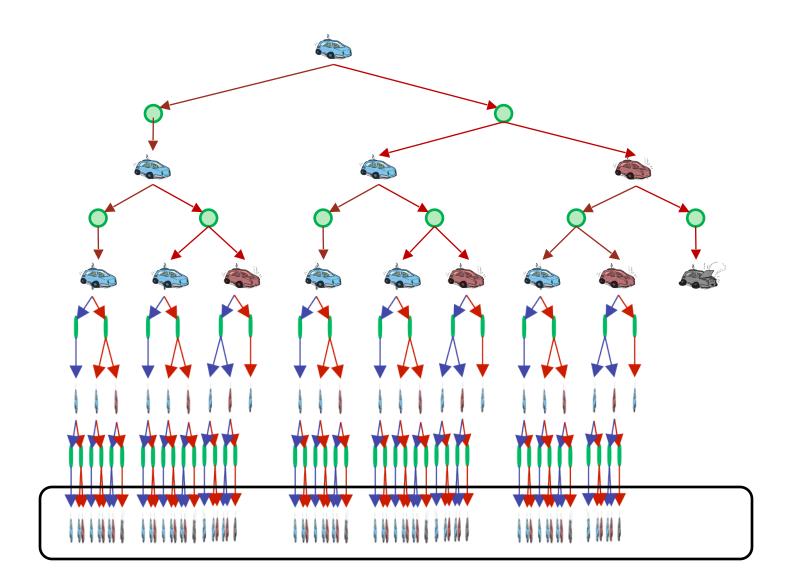
Gridworld Display			
0.64 →	0.74 ▸	0.85)	1.00
^		^	
0.56		0.57	-1.00
^		^	
0.48	∢ 0.41	0.47	∢ 0.27
VALUES AFTER 10 ITERATIONS			

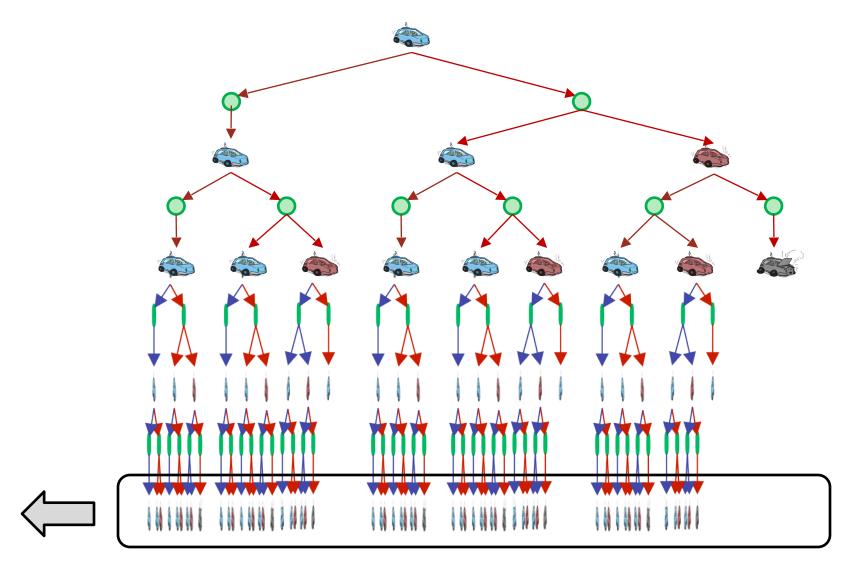
000	○ ○ Gridworld Display		
0.64 ▸	0.74 →	0.85 →	1.00
• 0.56		• 0.57	-1.00
• 0.48	∢ 0.42	• 0.47	∢ 0.27
VALUES AFTER 11 ITERATIONS			

Gridworld Display				
0.64 →	0.74 ▸	0.85)	1.00	
• 0.57		• 0.57	-1.00	
• 0.49	∢ 0.42	▲ 0.47	∢ 0.28	
VALUE	VALUES AFTER 12 ITERATIONS			

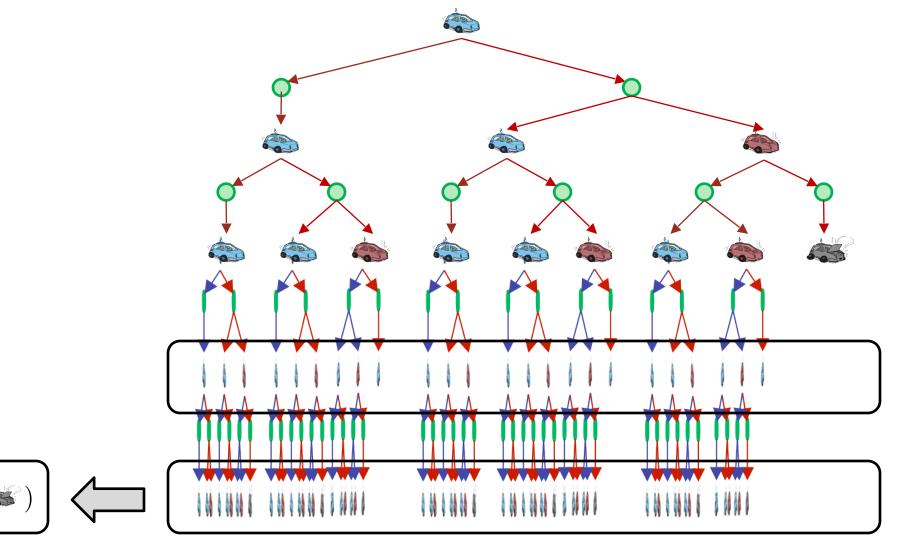
Gridworld Display			
0.64)	0.74 →	0.85)	1.00
^		^	
0.57		0.57	-1.00
0.49	◆ 0.43	0.48	∢ 0.28
VALUES AFTER 100 ITERATIONS			



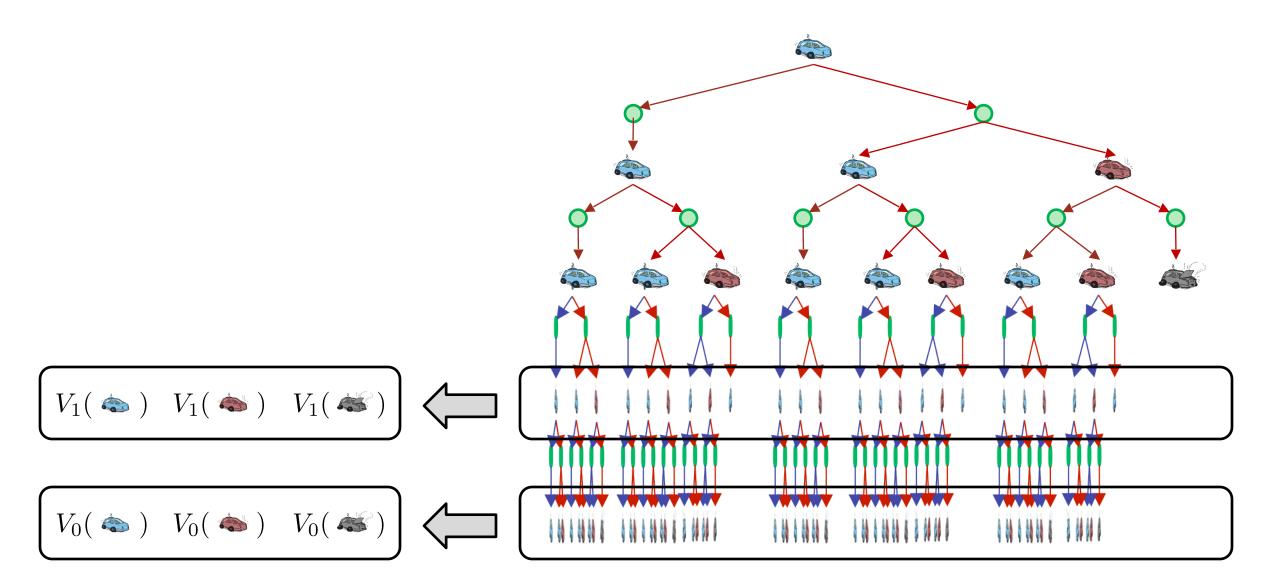


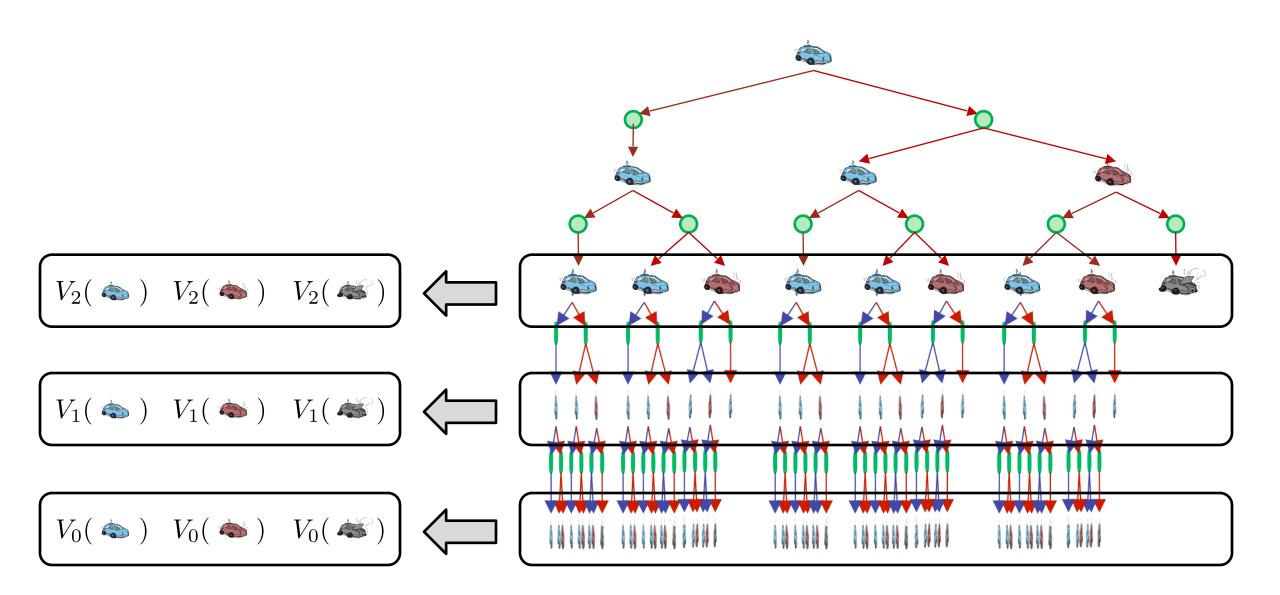


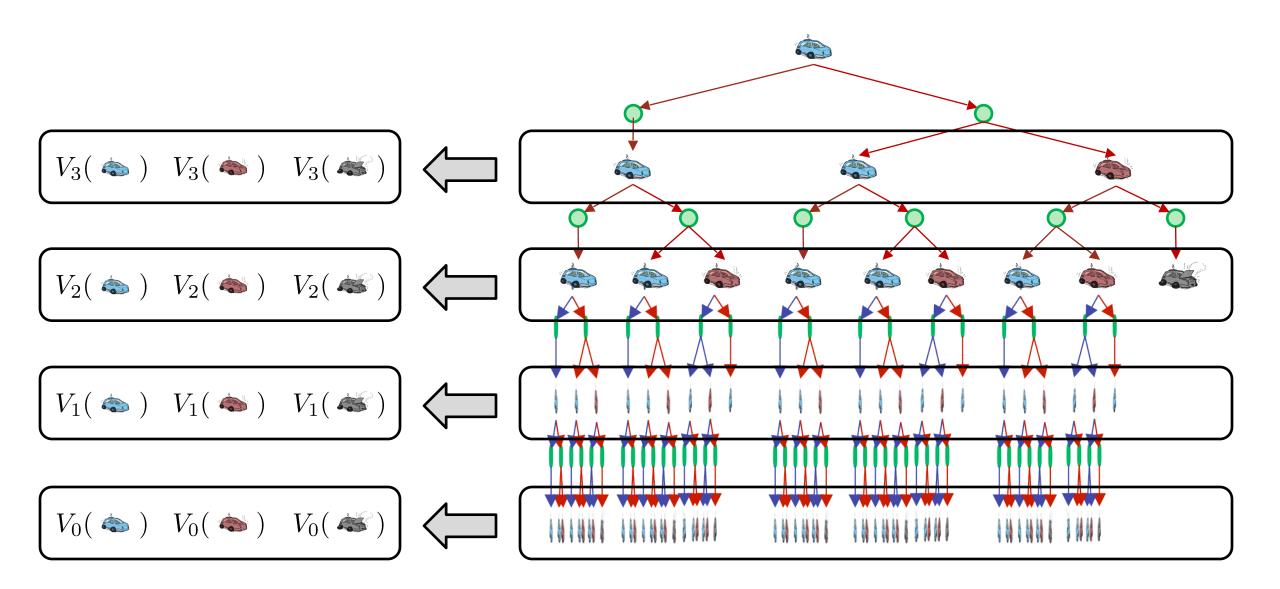
$$\left[V_0(\clubsuit) \quad V_0(\bigstar) \quad V_0(\bigstar) \right]$$

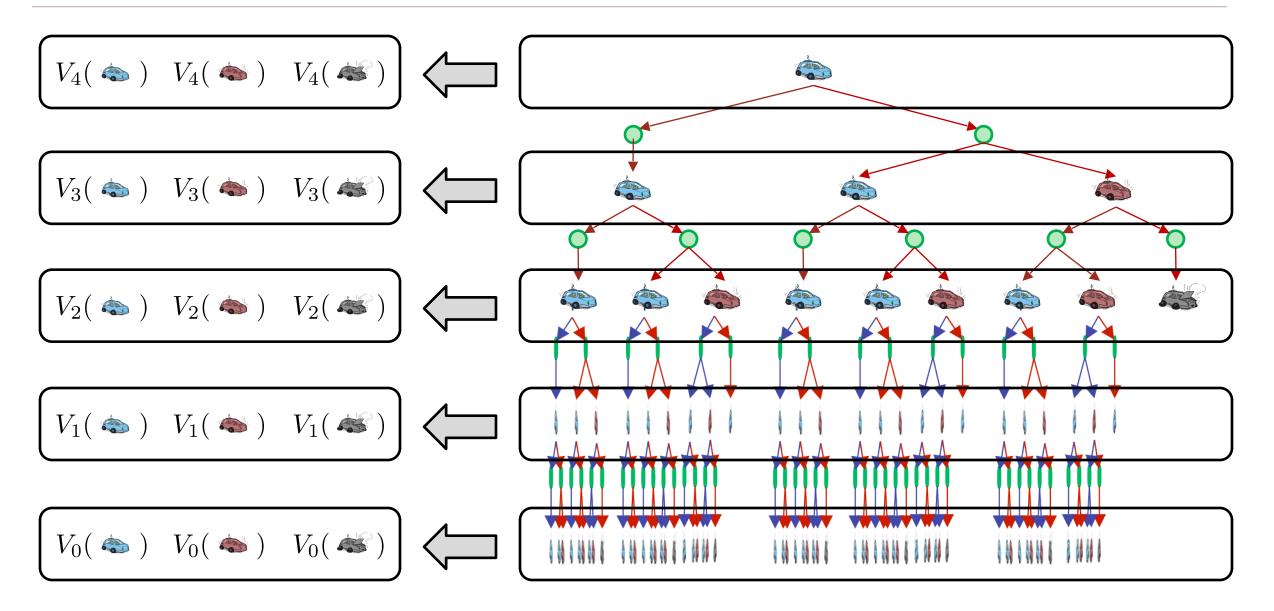


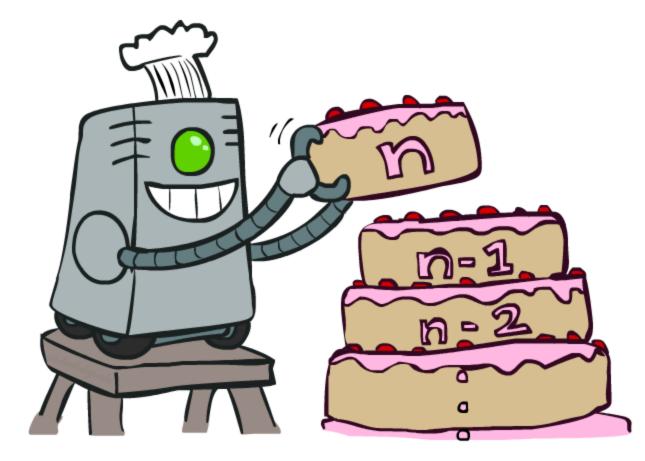
$$V_0(\clubsuit)$$
 $V_0(\bigstar)$ $V_0(\bigstar)$











- Start with $V_0(s) = 0$: no time steps left means an expected reward sum of zero
- Given vector of $V_k(s)$ values, do one play of expectimax from each state:

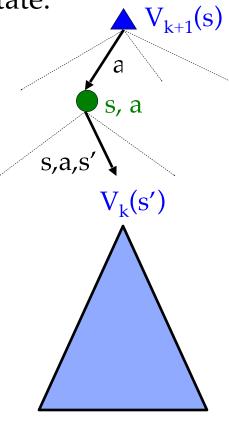
• Start with $V_0(s) = 0$: no time steps left means an expected reward sum of zero

• Given vector of $V_k(s)$ values, do one play of expectimax from each state:

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

• Repeat until convergence, which yields V*

• Complexity of each iteration: O(S²A)



• Start with $V_0(s) = 0$: no time steps left means an expected reward sum of zero

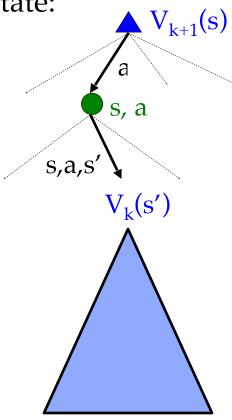
• Given vector of $V_k(s)$ values, do one play of expectimax from each state:

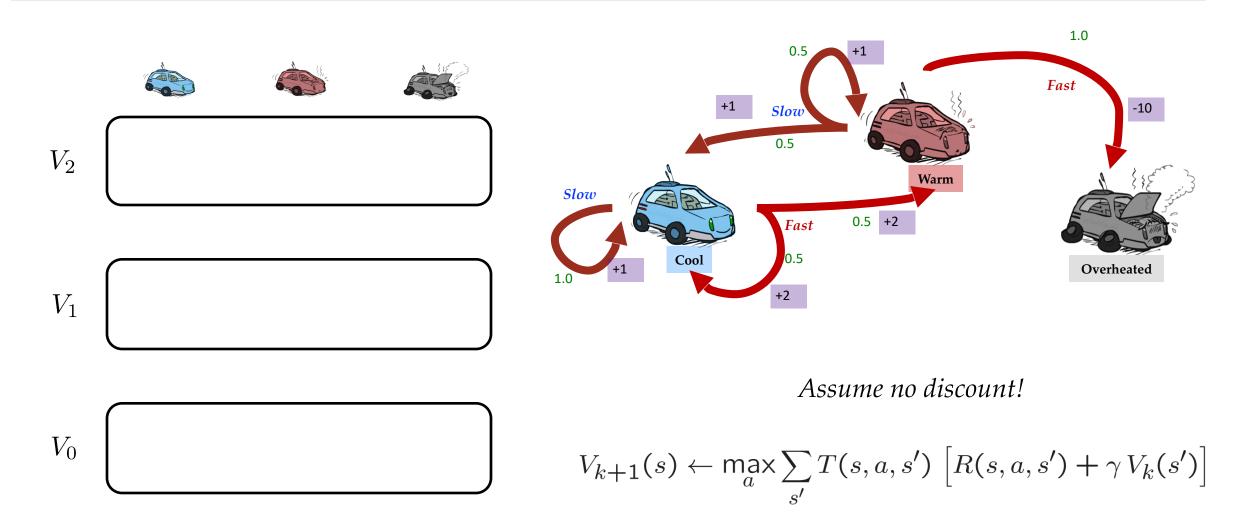
$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

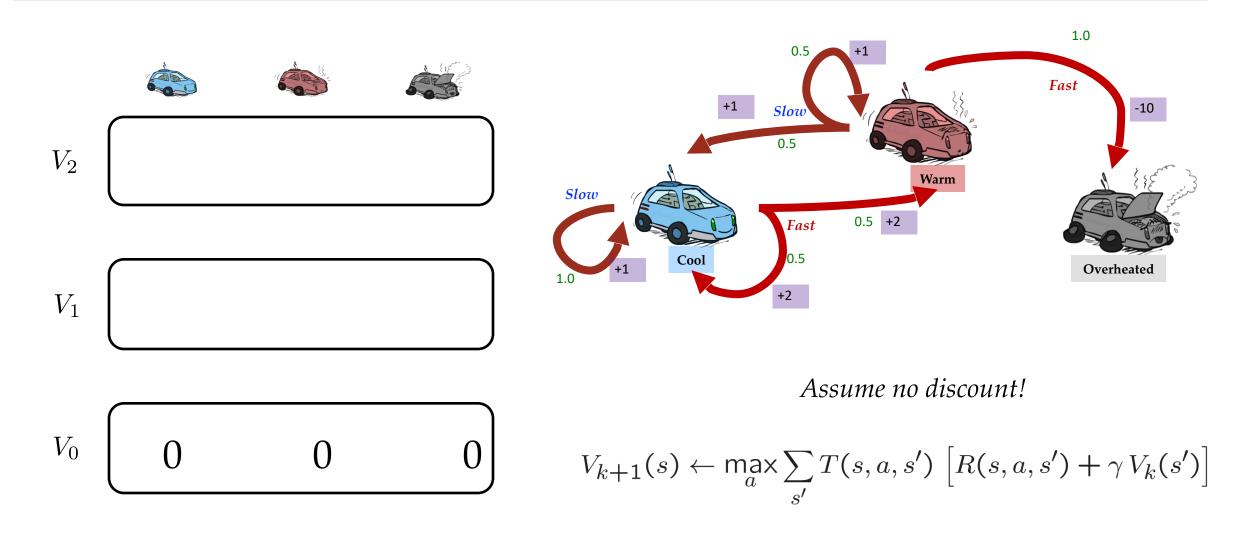
• Repeat until convergence, which yields V*

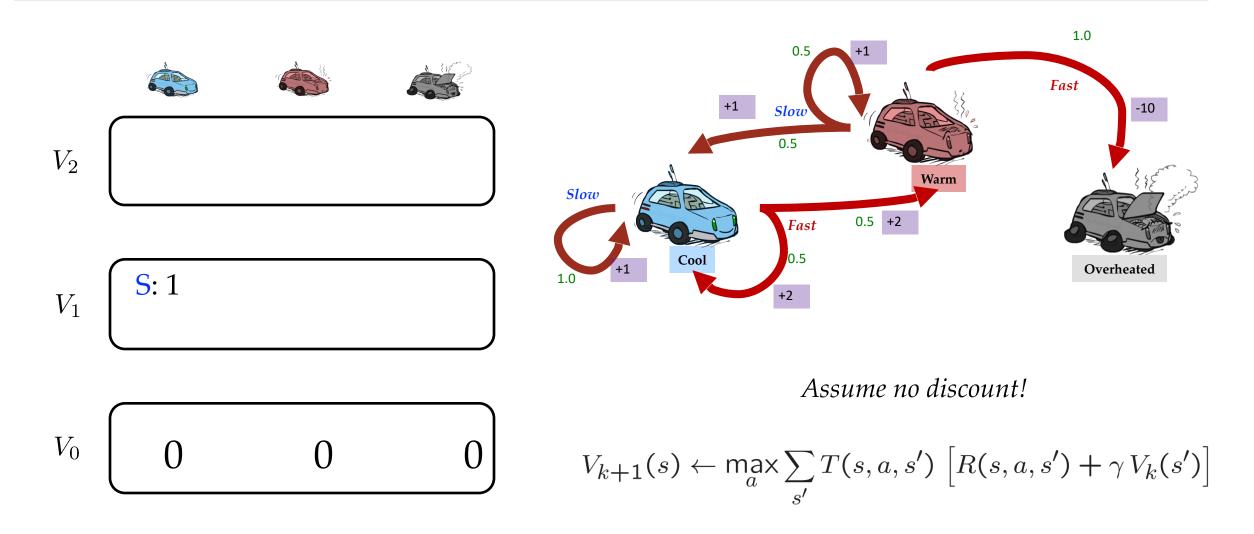
• Complexity of each iteration: O(S²A)

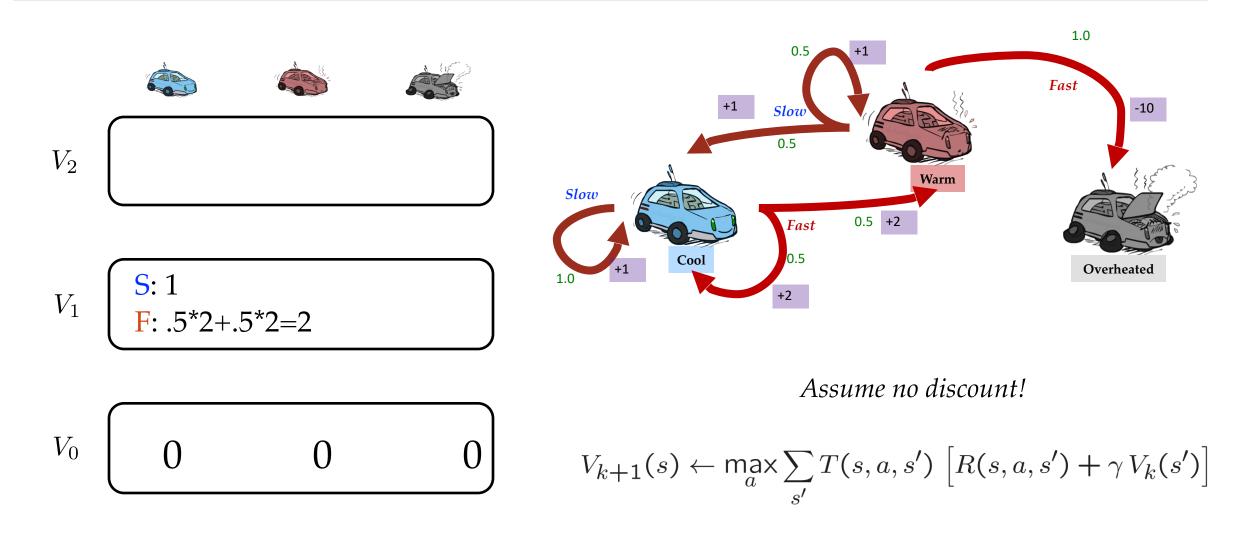
Theorem: will converge to unique optimal values
 Basic idea: approximations get refined towards optimal values

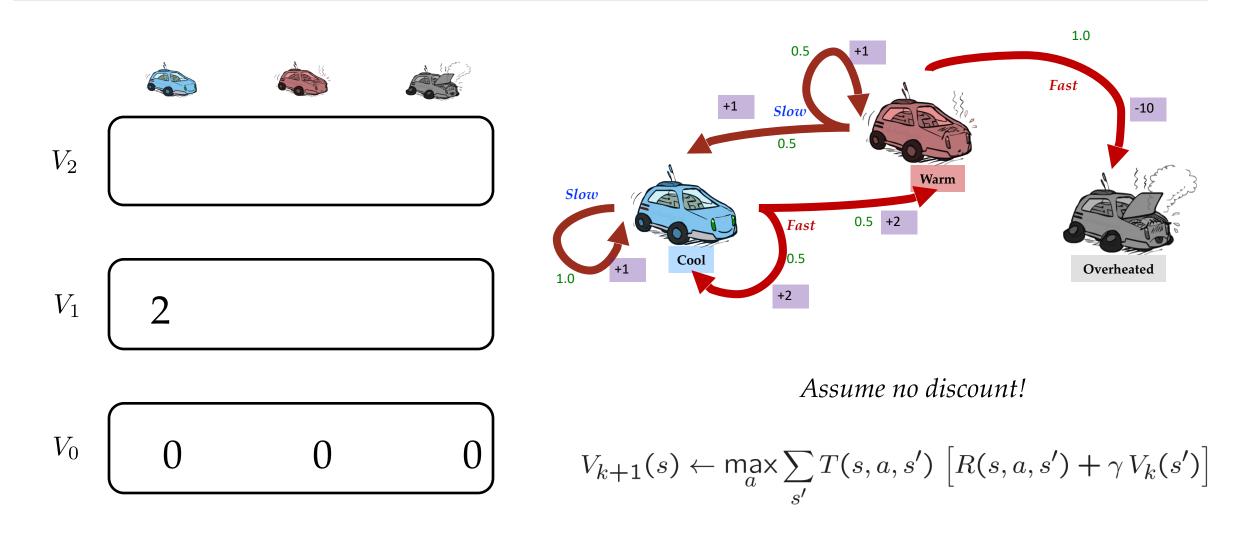


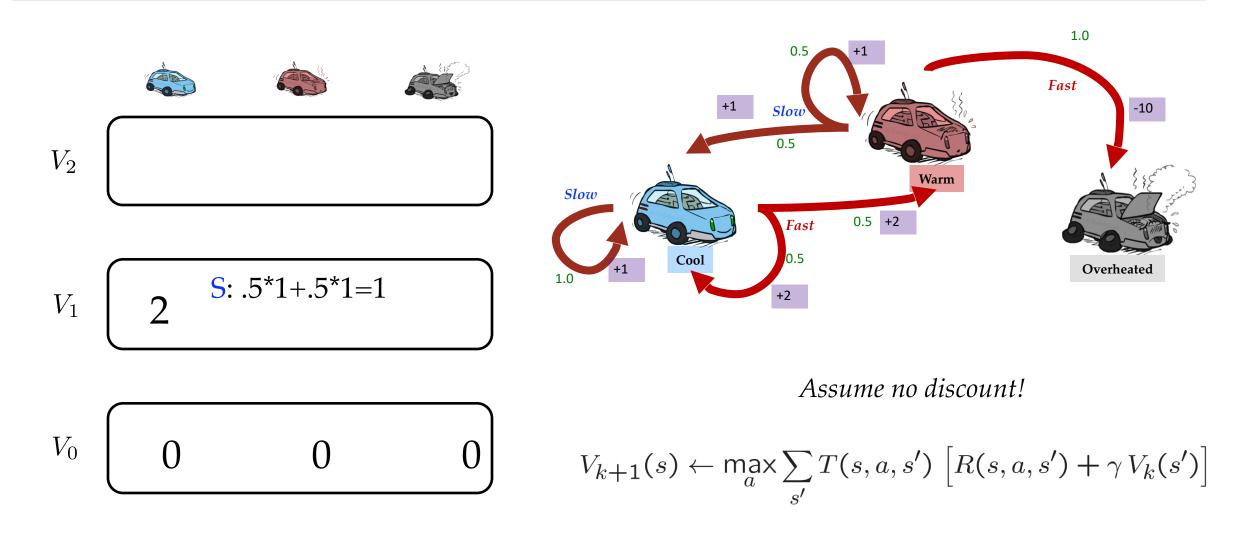


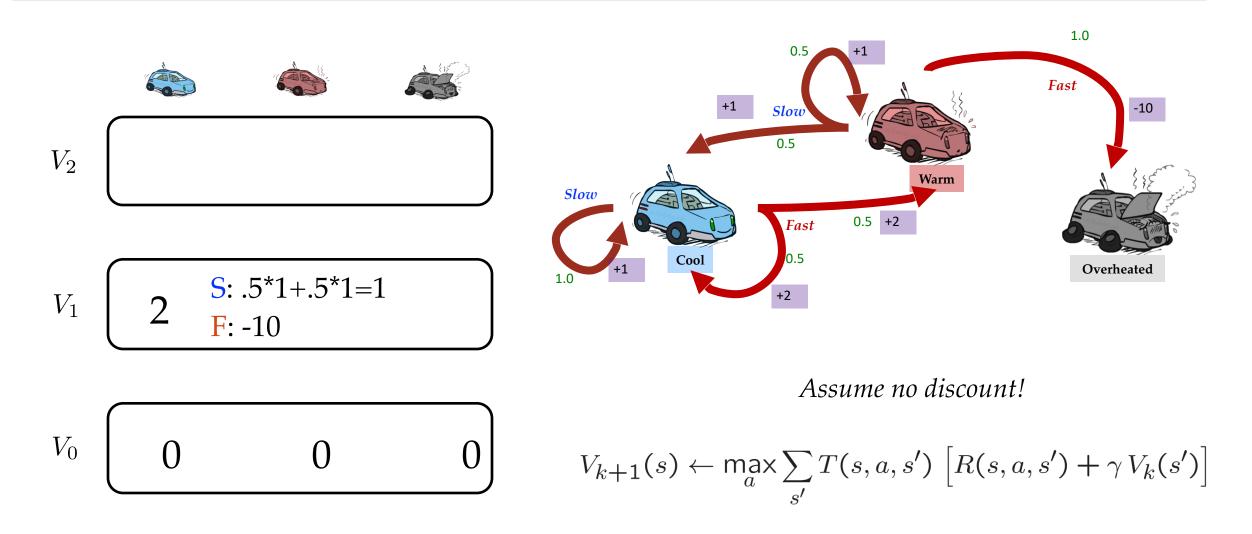


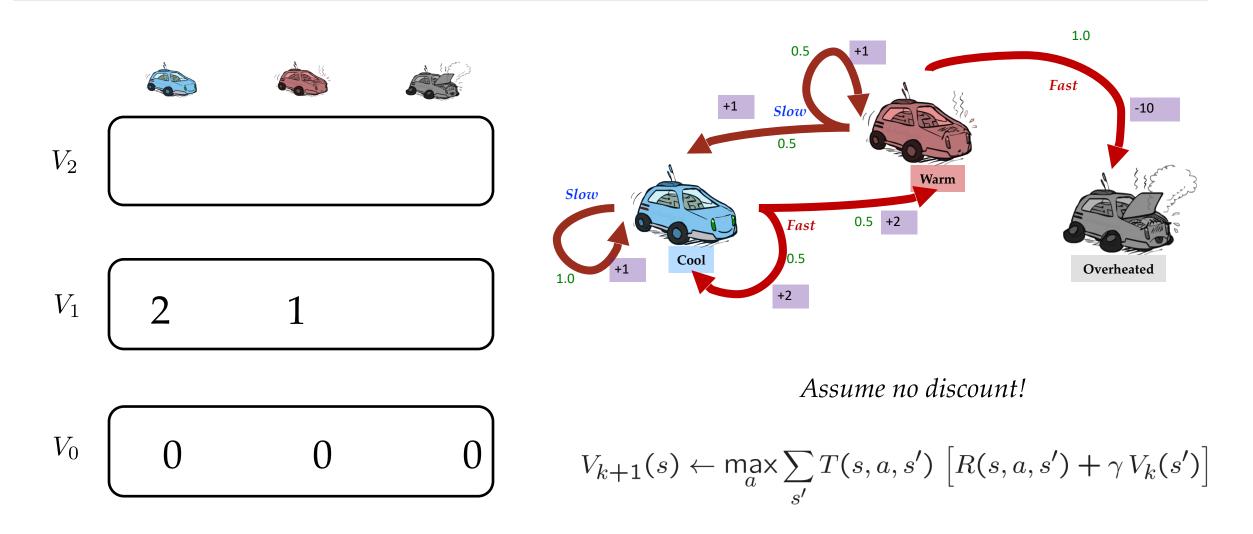


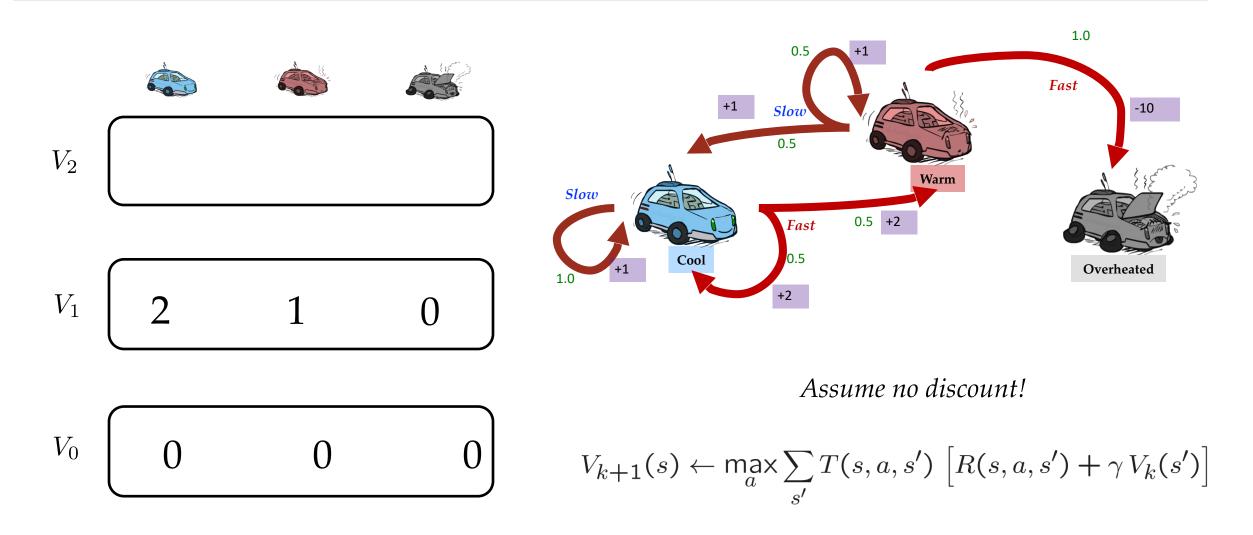


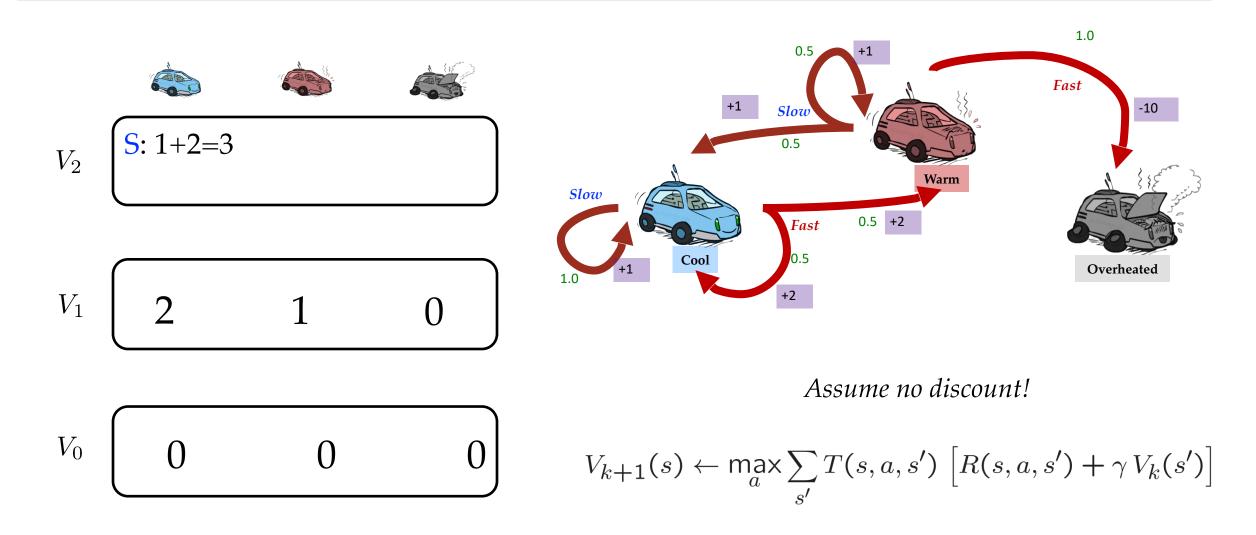


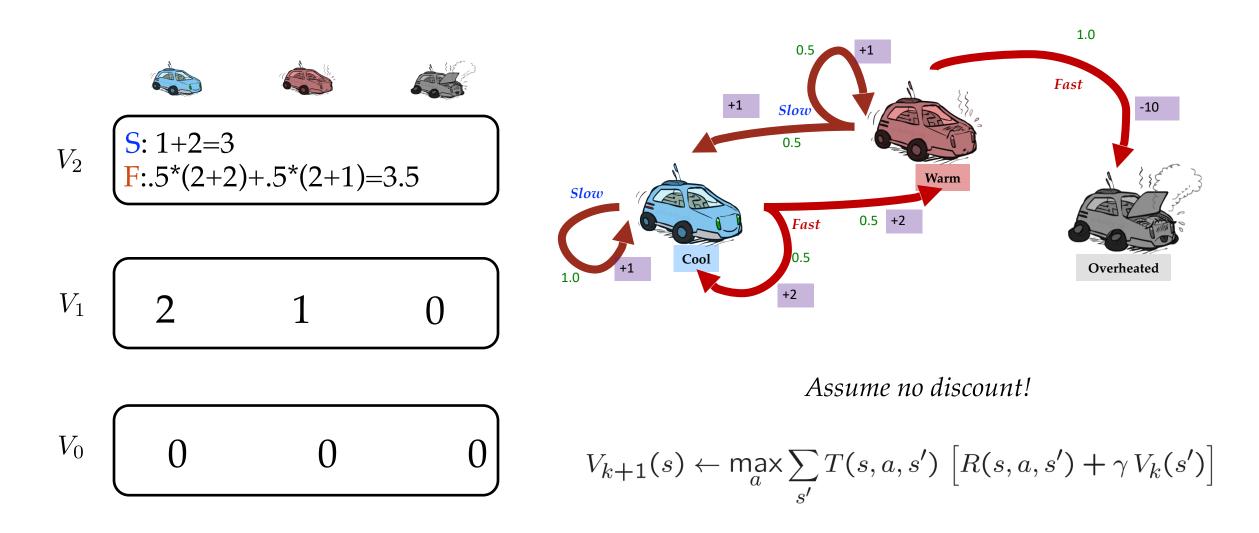


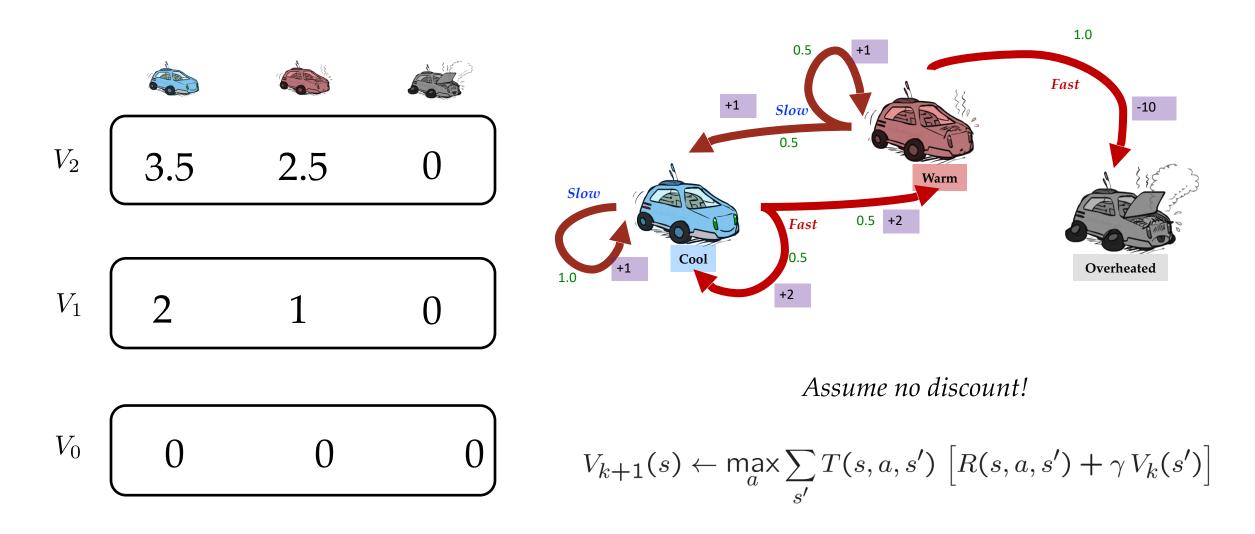












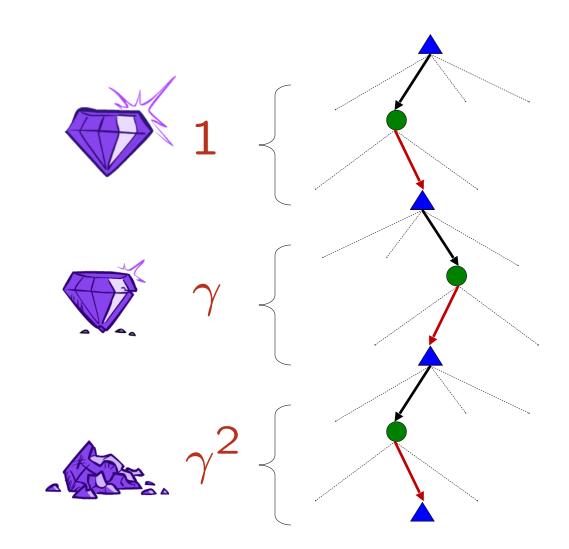
Discounting

• How to discount?

• Each time we descend a level, we multiply in the discount once

• Why discount?

- Reward now is better than later
- Can also think of it as a 1γ chance of ending the process at every step
- Also helps our algorithms converge

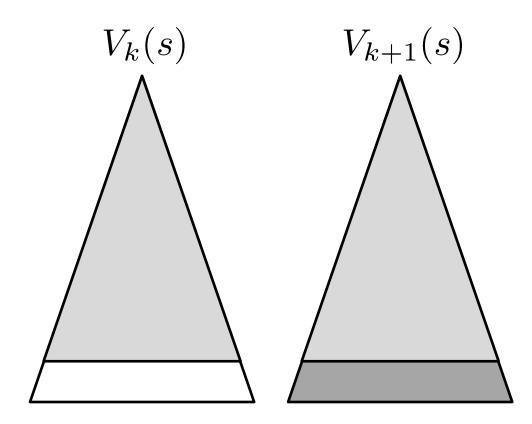


Convergence*

• How do we know the V_k vectors are going to converge? (assuming $0 < \gamma < 1$)

Convergence*

- How do we know the V_k vectors are going to converge? (assuming $0 < \gamma < 1$)
- Proof Sketch:
 - \circ For any state V_k and V_{k+1} can be viewed as depth k+1 expectimax results in nearly identical search trees
 - $\circ~$ The difference is that on the bottom layer, V_{k+1} has actual rewards while V_k has zeros
 - $\circ~$ That last layer is at best all $\rm R_{MAX}$
 - $\circ~$ It is at worst $R_{\rm MIN}$
 - $\circ~$ But everything is discounted by γ^k that far out
 - $\circ~So~V_k$ and V_{k+1} are at most $\gamma^k \max |\,R\,|\,$ different
 - So as k increases, the values converge



Next Lecture: Policy-Based Methods

Policies may converge long before values do