
15-281 AI: Representation and Problem Solving
Markov Decision Processes

Instructors: Aditi Raghunathan and Vince Conitzer

Carnegie Mellon University
[These slides adapted from CMU AI and http://ai.berkeley.edu]

Logistics

o HW 5 due today (Oct 10th)
o P3 checkpoint due Oct 13th
o Mid-semester feedback - please fill out!
o Fall break next week!

2

Non-Deterministic Search

Example: Grid World
▪ A maze-like problem

▪ The agent lives in a grid
▪ Walls block the agent’s path

Example: Grid World
▪ A maze-like problem

▪ The agent lives in a grid
▪ Walls block the agent’s path

▪ Noisy movement: actions do not always go as planned
▪ 80% of the time, the action North takes the agent North

(if there is no wall there)
▪ 10% of the time, North takes the agent West; 10% East
▪ If there is a wall in the direction the agent would have

been taken, the agent stays put

Example: Grid World
▪ A maze-like problem

▪ The agent lives in a grid
▪ Walls block the agent’s path

▪ Noisy movement: actions do not always go as planned
▪ 80% of the time, the action North takes the agent North

(if there is no wall there)
▪ 10% of the time, North takes the agent West; 10% East
▪ If there is a wall in the direction the agent would have

been taken, the agent stays put

▪ The agent receives rewards
▪ Small “living” reward each step (can be negative)
▪ Big rewards come at the end (good or bad)

Example: Grid World
▪ A maze-like problem

▪ The agent lives in a grid
▪ Walls block the agent’s path

▪ Noisy movement: actions do not always go as planned
▪ 80% of the time, the action North takes the agent North

(if there is no wall there)
▪ 10% of the time, North takes the agent West; 10% East
▪ If there is a wall in the direction the agent would have

been taken, the agent stays put

▪ The agent receives rewards
▪ Small “living” reward each step (can be negative)
▪ Big rewards come at the end (good or bad)

▪ Goal: maximize sum of rewards

Grid World Actions
Deterministic Grid World

Grid World Actions
Deterministic Grid World Stochastic Grid World

Markov Decision Processes

o An MDP is defined by:
o A set of states s ∈ S
o A set of actions a ∈ A
o A transition function T(s, a, s’)

o Probability that a from s leads to s’, i.e., P(s’| s, a)
o Also called the model or the dynamics

o A reward function R(s, a, s’)
o Sometimes just R(s) or R(s’)

o A start state
o Maybe a terminal state

What is Markov about MDPs?
o “Markov” generally means that given the present state, the future and

the past are independent

o For Markov decision processes, “Markov” means action outcomes
depend only on the current state

o This is just like search, where the successor function could only depend
on the current state (not the history)

Andrey Markov
(1856-1922)

Policies
o In deterministic single-agent search

problems, we wanted an optimal plan, or
sequence of actions, from start to a goal

Policies
o In deterministic single-agent search

problems, we wanted an optimal plan, or
sequence of actions, from start to a goal

o For MDPs, we want an optimal

Policies
o In deterministic single-agent search

problems, we wanted an optimal plan, or
sequence of actions, from start to a goal

o For MDPs, we want an optimal
policy π*: S → A

Policies
o In deterministic single-agent search

problems, we wanted an optimal plan, or
sequence of actions, from start to a goal

o For MDPs, we want an optimal
policy π*: S → A

o A policy π gives an action for each state

Policies
o In deterministic single-agent search

problems, we wanted an optimal plan, or
sequence of actions, from start to a goal

o For MDPs, we want an optimal
policy π*: S → A

o A policy π gives an action for each state
o An optimal policy is one that maximizes

expected utility if followed

Policies
o In deterministic single-agent search

problems, we wanted an optimal plan, or
sequence of actions, from start to a goal

o For MDPs, we want an optimal
policy π*: S → A

o A policy π gives an action for each state
o An optimal policy is one that maximizes

expected utility if followed
Optimal policy when R(s, a, s’) =

-0.4 for all non-terminals s

Optimal Policies

R(s) = -0.01

Poll: Optimal Policy for Different Rewards

(A)

What is the optimal
policy for living reward

R(s) = -2.0

The others correspond to
R(s) = -0.01, R(s) = -0.03,

R(s) = -0.4

Poll: Optimal Policy for Different Rewards

(B)(A)

What is the optimal
policy for living reward

R(s) = -2.0

The others correspond to
R(s) = -0.01, R(s) = -0.03,

R(s) = -0.4

Poll: Optimal Policy for Different Rewards

(C)

(B)(A)

What is the optimal
policy for living reward

R(s) = -2.0

The others correspond to
R(s) = -0.01, R(s) = -0.03,

R(s) = -0.4

Poll: Optimal Policy for Different Rewards

(D)(C)

(B)(A)

What is the optimal
policy for living reward

R(s) = -2.0

The others correspond to
R(s) = -0.01, R(s) = -0.03,

R(s) = -0.4

Utilities of Sequences

Utilities of Sequences
o What preferences should an agent have over reward sequences?

Utilities of Sequences
o What preferences should an agent have over reward sequences?

o More or less?

Utilities of Sequences
o What preferences should an agent have over reward sequences?

o More or less? [1, 2, 2] [2, 3, 4] or

Utilities of Sequences
o What preferences should an agent have over reward sequences?

o More or less?

o Now or later?

[1, 2, 2] [2, 3, 4] or

Utilities of Sequences
o What preferences should an agent have over reward sequences?

o More or less?

o Now or later?

[1, 2, 2] [2, 3, 4] or

[0, 0, 1] [1, 0, 0] or

Discounting
o It’s reasonable to maximize the sum of rewards
o It’s also reasonable to prefer rewards now to rewards later
o One solution: values of rewards decay exponentially

Example: discount of 0.5
U([1,2,3]) = 1*1 + 0.5*2 + 0.25*3
U([1,2,3]) < U([3,2,1])

Discounting
o It’s reasonable to maximize the sum of rewards
o It’s also reasonable to prefer rewards now to rewards later
o One solution: values of rewards decay exponentially

Worth Now

Example: discount of 0.5
U([1,2,3]) = 1*1 + 0.5*2 + 0.25*3
U([1,2,3]) < U([3,2,1])

Discounting
o It’s reasonable to maximize the sum of rewards
o It’s also reasonable to prefer rewards now to rewards later
o One solution: values of rewards decay exponentially

Worth Now Worth Next Step

Example: discount of 0.5
U([1,2,3]) = 1*1 + 0.5*2 + 0.25*3
U([1,2,3]) < U([3,2,1])

Discounting
o It’s reasonable to maximize the sum of rewards
o It’s also reasonable to prefer rewards now to rewards later
o One solution: values of rewards decay exponentially

Worth Now Worth Next Step Worth In Two Steps

Example: discount of 0.5
U([1,2,3]) = 1*1 + 0.5*2 + 0.25*3
U([1,2,3]) < U([3,2,1])

Poll: Discounting
o Given:

o Actions: East, West, and Exit (only available in exit states a, e)
o Transitions: deterministic

1. For γ = 1, optimal policy is (i)
2. For γ = 1, optimal policy is (ii)
3. For γ = 0.1, optimal policy is (i)
4. For γ = 0.1, optimal policy is (ii)

(i)

(ii)

Poll: Discounting
o Given:

o Actions: East, West, and Exit (only available in exit states a, e)
o Transitions: deterministic

1. For γ = 1, optimal policy is (i)
2. For γ = 1, optimal policy is (ii)
3. For γ = 0.1, optimal policy is (i)
4. For γ = 0.1, optimal policy is (ii)

<- <- <-

(i)

(ii)

Poll: Discounting
o Given:

o Actions: East, West, and Exit (only available in exit states a, e)
o Transitions: deterministic

1. For γ = 1, optimal policy is (i)
2. For γ = 1, optimal policy is (ii)
3. For γ = 0.1, optimal policy is (i)
4. For γ = 0.1, optimal policy is (ii)

<- <- <-

<- <- ->

(i)

(ii)

Example: Racing

Example: Racing
o A robot car wants to travel far, quickly

Cool

Warm

Overheated

Fast

Fast

Slow

Slow
0.5

0.5

0.5

0.5

1.0

1.0

+1

+1

+1

+2

+2

-10

Example: Racing
o A robot car wants to travel far, quickly
o Three states: Cool, Warm, Overheated

Cool

Warm

Overheated

Fast

Fast

Slow

Slow
0.5

0.5

0.5

0.5

1.0

1.0

+1

+1

+1

+2

+2

-10

Example: Racing
o A robot car wants to travel far, quickly
o Three states: Cool, Warm, Overheated
o Two actions: Slow, Fast

Cool

Warm

Overheated

Fast

Fast

Slow

Slow
0.5

0.5

0.5

0.5

1.0

1.0

+1

+1

+1

+2

+2

-10

Example: Racing
o A robot car wants to travel far, quickly
o Three states: Cool, Warm, Overheated
o Two actions: Slow, Fast
o Going faster gets double reward

Cool

Warm

Overheated

Fast

Fast

Slow

Slow
0.5

0.5

0.5

0.5

1.0

1.0

+1

+1

+1

+2

+2

-10

Racing Search Tree

MDP Search Trees
o Each MDP state projects an expectimax-like search tree

a

s

s’

s, a
(s,a,s’) called a
transition

T(s,a,s’) = P(s’|s,a)

R(s,a,s’)

s,a,s’

s is a state

(s, a) is a
q-state

Solving MDPs

Finding Optimal Policy

o Expectimax algorithm! (studied in search module)

0.25 0.50 0.25Probability:

20 min 30 min 60 minTime:
x x x+ +

6020 30

0.25

0.5

0.25

Chance node notation
𝑉 (𝑠) = ∑

𝑠′
[𝑃 (𝑠′) 𝑉 (𝑠′)]

Racing Search Tree

Racing Search Tree

Racing Search Tree

Racing Search Tree

Racing Search Tree

Racing Search Tree

Racing Search Tree

Racing Search Tree
o We’re doing way too much work

with expectimax!

o Problem: States are repeated
o Idea: Only compute needed

quantities once

Racing Search Tree
o We’re doing way too much work

with expectimax!

o Problem: States are repeated
o Idea: Only compute needed

quantities once

o Problem: Tree goes on forever
o Idea: Do a depth-limited

computation, but with increasing
depths until change is small

o Note: deep parts of the tree
eventually don’t matter if γ < 1

Recap: Defining MDPs
o Markov decision processes:

o Set of states S
o Start state s0
o Set of actions A
o Transitions P(s’|s,a) (or T(s,a,s’))
o Rewards R(s,a,s’) (and discount γ)

o MDP quantities so far:
o Policy = Choice of action for each state
oUtility = sum of (discounted) rewards

a

s

s, a

s,a,s’
s’

Optimal Quantities
▪ The value (utility) of a state s:

V*(s) = expected utility starting in s
and acting optimally

▪ The value (utility) of a q-state (s,a):
Q*(s,a) = expected utility starting

out having taken action a from
state s and (thereafter) acting
optimally

▪ The optimal policy:
π*(s) = optimal action from state s

a

s

s’

s, a

(s,a,s’) is a
transition

s,a,s’

s is a
state

(s, a) is a
q-state

Relationship b/w Optimal Quantities

o V*(s) in terms of Q*(s, a)

o Q*(s, a) in terms of V*(s)

o π*(s) in terms of Q*(s, a)

26

a

s

s, a

s,a,s’
s’

Gridworld V* Values

Noise = 0.2
Discount = 0.9
Living reward = 0

Gridworld Q* Values

Noise = 0.2
Discount = 0.9
Living reward = 0

Relationship b/w Optimal Quantities

o V*(s) in terms of Q*(s, a)

o Q*(s, a) in terms of V*(s)

o π*(s) in terms of Q*(s, a)

o Recursive definition for V*

29

a

s

s, a

s,a,s’
s’

Time-Limited Values
o Key idea: time-limited values

Time-Limited Values
o Key idea: time-limited values

o Define Vk(s) to be the optimal value of s if the
game ends in k more time steps

Time-Limited Values
o Key idea: time-limited values

o Define Vk(s) to be the optimal value of s if the
game ends in k more time steps
o Equivalently, it’s what a depth-k expectimax would give

from s

Time-Limited Values
o Key idea: time-limited values

o Define Vk(s) to be the optimal value of s if the
game ends in k more time steps
o Equivalently, it’s what a depth-k expectimax would give

from s

Time-Limited Values
o Key idea: time-limited values

o Define Vk(s) to be the optimal value of s if the
game ends in k more time steps
o Equivalently, it’s what a depth-k expectimax would give

from s

k=0

Noise = 0.2
Discount = 0.9
Living reward = 0

k=1

Noise = 0.2
Discount = 0.9
Living reward = 0

k=2

Noise = 0.2
Discount = 0.9
Living reward = 0

k=3

Noise = 0.2
Discount = 0.9
Living reward = 0

k=4

Noise = 0.2
Discount = 0.9
Living reward = 0

k=5

Noise = 0.2
Discount = 0.9
Living reward = 0

k=6

Noise = 0.2
Discount = 0.9
Living reward = 0

k=7

Noise = 0.2
Discount = 0.9
Living reward = 0

k=8

Noise = 0.2
Discount = 0.9
Living reward = 0

k=9

Noise = 0.2
Discount = 0.9
Living reward = 0

k=10

Noise = 0.2
Discount = 0.9
Living reward = 0

k=11

Noise = 0.2
Discount = 0.9
Living reward = 0

k=12

Noise = 0.2
Discount = 0.9
Living reward = 0

k=100

Noise = 0.2
Discount = 0.9
Living reward = 0

Computing Time-Limited Values

Computing Time-Limited Values

Computing Time-Limited Values

Computing Time-Limited Values

Computing Time-Limited Values

Computing Time-Limited Values

Computing Time-Limited Values

Computing Time-Limited Values

Value Iteration

Value Iteration

Value Iteration
o Start with V0(s) = 0: no time steps left means an expected reward sum of zero

o Given vector of Vk(s) values, do one play of expectimax from each state:

Value Iteration
o Start with V0(s) = 0: no time steps left means an expected reward sum of zero

o Given vector of Vk(s) values, do one play of expectimax from each state:

o Repeat until convergence, which yields V*

o Complexity of each iteration: O(S2A)

a

Vk+1(s)

s, a

s,a,s’
Vk(s’)

Value Iteration
o Start with V0(s) = 0: no time steps left means an expected reward sum of zero

o Given vector of Vk(s) values, do one play of expectimax from each state:

o Repeat until convergence, which yields V*

o Complexity of each iteration: O(S2A)

o Theorem: will converge to unique optimal values
o Basic idea: approximations get refined towards optimal values

a

Vk+1(s)

s, a

s,a,s’
Vk(s’)

Example: Value Iteration

Assume no discount!

Cool

Warm

Overheated

Fast

Fast

Slow

Slow

0.5

0.5

0.5

0.5

1.0

1.0

+1

+1

+1

+2

+2

-10

Example: Value Iteration

 0 0 0

Assume no discount!

Cool

Warm

Overheated

Fast

Fast

Slow

Slow

0.5

0.5

0.5

0.5

1.0

1.0

+1

+1

+1

+2

+2

-10

Example: Value Iteration

 0 0 0

S: 1

Assume no discount!

Cool

Warm

Overheated

Fast

Fast

Slow

Slow

0.5

0.5

0.5

0.5

1.0

1.0

+1

+1

+1

+2

+2

-10

Example: Value Iteration

 0 0 0

S: 1

Assume no discount!

F: .5*2+.5*2=2

Cool

Warm

Overheated

Fast

Fast

Slow

Slow

0.5

0.5

0.5

0.5

1.0

1.0

+1

+1

+1

+2

+2

-10

Example: Value Iteration

 0 0 0

2

Assume no discount!

Cool

Warm

Overheated

Fast

Fast

Slow

Slow

0.5

0.5

0.5

0.5

1.0

1.0

+1

+1

+1

+2

+2

-10

Example: Value Iteration

 0 0 0

2

Assume no discount!

S: .5*1+.5*1=1
Cool

Warm

Overheated

Fast

Fast

Slow

Slow

0.5

0.5

0.5

0.5

1.0

1.0

+1

+1

+1

+2

+2

-10

Example: Value Iteration

 0 0 0

2

Assume no discount!

S: .5*1+.5*1=1
F: -10

Cool

Warm

Overheated

Fast

Fast

Slow

Slow

0.5

0.5

0.5

0.5

1.0

1.0

+1

+1

+1

+2

+2

-10

Example: Value Iteration

 0 0 0

2

Assume no discount!

1
Cool

Warm

Overheated

Fast

Fast

Slow

Slow

0.5

0.5

0.5

0.5

1.0

1.0

+1

+1

+1

+2

+2

-10

Example: Value Iteration

 0 0 0

2

Assume no discount!

1 0
Cool

Warm

Overheated

Fast

Fast

Slow

Slow

0.5

0.5

0.5

0.5

1.0

1.0

+1

+1

+1

+2

+2

-10

Example: Value Iteration

 0 0 0

2

Assume no discount!

1 0

S: 1+2=3

Cool

Warm

Overheated

Fast

Fast

Slow

Slow

0.5

0.5

0.5

0.5

1.0

1.0

+1

+1

+1

+2

+2

-10

Example: Value Iteration

 0 0 0

2

Assume no discount!

1 0

S: 1+2=3
F:.5*(2+2)+.5*(2+1)=3.5

Cool

Warm

Overheated

Fast

Fast

Slow

Slow

0.5

0.5

0.5

0.5

1.0

1.0

+1

+1

+1

+2

+2

-10

Example: Value Iteration

 0 0 0

2

Assume no discount!

1 0

3.5 2.5 0

Cool

Warm

Overheated

Fast

Fast

Slow

Slow

0.5

0.5

0.5

0.5

1.0

1.0

+1

+1

+1

+2

+2

-10

Discounting
o How to discount?

o Each time we descend a level, we
multiply in the discount once

o Why discount?
o Reward now is better than later
o Can also think of it as a chance of

ending the process at every step
o Also helps our algorithms converge

1 − 𝛾

Convergence*
o How do we know the Vk vectors are going to

converge? (assuming 0 < γ < 1)

Convergence*
o How do we know the Vk vectors are going to

converge? (assuming 0 < γ < 1)

o Proof Sketch:
o For any state Vk and Vk+1 can be viewed as depth k+1

expectimax results in nearly identical search trees
o The difference is that on the bottom layer, Vk+1 has actual

rewards while Vk has zeros
o That last layer is at best all RMAX
o It is at worst RMIN
o But everything is discounted by γk that far out
o So Vk and Vk+1 are at most γk max|R| different
o So as k increases, the values converge

Next Lecture: Policy-Based Methods

Policies may converge long before values do

