
Making Decisions Based on the Preferences of Multiple
Agents

Vincent Conitzer
Departments of Computer Science and Economics

Duke University
Durham, NC, USA

conitzer@cs.duke.edu

People often have to reach a joint decision even though
they have conflicting preferences over the alternatives. Ex-
amples range from the mundane—such as allocating chores
among the members of a household—to the sublime—such
as electing a government and thereby charting the course
for a country. The joint decision can be reached by an infor-
mal negotiating process or by a carefully specified protocol.
Philosophers, mathematicians, political scientists, economists,
and others have studied the merits of various protocols for
centuries. More recently, especially over the course of the
past decade or so, computer scientists have also become
deeply involved in this study. The perhaps surprising ar-
rival of computer scientists on this scene is due to a variety
of reasons, including the following.

1. Computer networks provide a new platform for com-
municating preferences. Examples include auction web-
sites, where preferences are communicated in the form
of bids, as well as websites that allow one to rate ev-
erything from the quality of a product to the attrac-
tiveness of a person.

2. Within computer science itself, there are increasingly
many settings where a decision must be made based
on the conflicting preferences of multiple parties. Ex-
amples include determining whose job gets to run first
on a machine, whose network traffic is routed along a
particular link, or whose advertisement is shown next
to a page of search results.

3. Greater computing power and better algorithms, as
well as a more computational mindset in the general
public, have made it possible to run computationally
demanding protocols that lead to much better out-
comes. An example is an auction in which bidders
can bid on arbitrary sets of items, rather than just on
individual items (I will discuss such auctions in more
detail later in this article). Such protocols used to be
considered theoretical niceties that could never be run

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

in practice (to the extent that they were conceived of
at all), but now they are actually practical.

4. The paradigms of computer science give a different and
useful perspective on some of the classic problems in
economics and related disciplines. For example, vari-
ous results in economics prove the existence of an equi-
librium, but do not provide an efficient method for
reaching such an equilibrium.

In this article, I give a (necessarily incomplete) survey
of topics that computer scientists are working on in this
domain. I will discuss voting and rank aggregation, task
and resource allocation, kidney exchanges, auctions and ex-
changes, charitable giving, and prediction markets; in addi-
tion, I will discuss the problem of agents acting in their own
best interest, which cuts across most of these applications. I
also intersperse a few opinions and predictions about where
future research should and will go.

In the below, the parties whose preferences we are inter-
ested in are not always people: they can also be, among
other things, robots, software agents, or firms.1 As is done
in both computer science and economics, I will use the term
agent to generically refer to one of the parties.

1. SETTINGS WITHOUT PAYMENTS
I will discuss a variety of settings, so it is helpful to cat-

egorize them somewhat. An important aspect is whether
the setting allows agents to make payments to each other
(in some currency). For example, in a voting setting, we
typically do not imagine money changing hands among vot-
ers (unethical behavior aside). On the other hand, in an
auction, we naturally expect the winning bidder to pay for
her winnings. In this section, I discuss various settings in
which no money changes hands; I will discuss settings with
payments in the next section.

1.1 Voting and rank aggregation
A natural and very general approach for deciding among

multiple alternatives is to vote over them. In the general
theory of voting, agents can do more than vote for a single
alternative: usually, they get to rank all the alternatives.
For example, if a group of people is deciding where to go for
dinner together, one of them may prefer American food to
Brazilian, and Brazilian to Chinese. This person’s vote can
then be expressed as A � B � C.

1In artificial intelligence, there is the study of multiagent
systems, where agents—for example, robots—often need a
protocol for coordinating on (say) a joint plan.

Given everyone’s vote, which cuisine should be chosen?
The answer is far from obvious. We need a voting rule that
takes as input a collection of votes, and as output returns
the winning alternative. A simple rule known as the plurality
rule chooses the alternative that is ranked first the most
often. In this case, the agents do not really need to give
a full ranking: it suffices to indicate one’s most-preferred
alternative, so each agent is in fact just voting for a single
alternative.

Another rule is the anti-plurality rule, which chooses the
alternative that is ranked last the least often. Now, it suffices
for agents to report their last-ranked alternative—they are
voting against an alternative. Which of these two rules is
better? It is hard to say. The former tries to maximize the
number of agents that are happy about the choice; the latter
tries to minimize the number that are unhappy. Another
rule, known as the Borda rule, tries to strike a balance: when
there are three alternatives, it will give two points to an
alternative whenever it is ranked first, one whenever it is
ranked second, and zero whenever it is ranked last. Many
other rules, most of them not relying on such a points-based
scheme, have been proposed; social choice theorists analyze
the desirable and undesirable properties of these rules.

Rather than just choosing a winning alternative, most of
these rules can also be used to find an aggregate ranking of
all the alternatives. For example, we can sort the alterna-
tives by their Borda score, thereby deciding not only on the
“best”alternative but also on the second-best, etc. There are
numerous applications of this that are relevant to computer
scientists: as an illustrative example, one can pose the same
query to multiple search engines, and combine the resulting
rankings of pages into an aggregate ranking.

One particularly nice rule for such settings is the Kemeny
rule, which finds an aggregate ranking of the alternatives
that “minimally disagrees” with the input rankings. More
precisely, we say that a disagreement occurs whenever the
aggregate ranking ranks one alternative above another, but
one of the voters ranks the latter alternative above the for-
mer. The Kemeny rule produces a ranking that minimizes
the total number of such disagreements (summed over both
voters and pairs of alternatives).

The Kemeny rule has a number of desirable properties.
For one, if we assume that there exists an unobserved “cor-
rect” ranking of the alternatives (reflecting their true qual-
ity), and each voter produces an estimate of this correct
ranking according to a particular noisy process, then the
Kemeny rule produces the maximum likelihood estimate of
the correct ranking [40].

Unfortunately, finding the Kemeny rule’s output ranking
is computationally intractable (formally, NP-hard) [3]! Nev-
ertheless, there are algorithms that can usually solve the
problem in practice [8]. As an example, in Duke’s computer
science department, we used the Kemeny rule to find an ag-
gregate ranking of our top Ph.D. applicants (based on the
rankings of the individual admissions committee members);
using the CPLEX solver, we found the Kemeny ranking for
over a hundred applicants in under a minute.

While enabling the use of computationally demanding vot-
ing rules such as the Kemeny rule is valuable, I believe that,
in the near future, computer scientists (specifically, the com-
putational social choice community) will make much larger
contributions to the theory and practice of voting. Real-
world organizations often need to make not just a single

decision, but rather decisions on a number of interrelated
issues. In our dining example, the agents need to decide not
only on a restaurant, but also on the time of the dinner; and
an agent’s preferred restaurant may depend on the time of
the dinner. For example, an agent may prefer not to start
a heavy Brazilian steakhouse meal shortly before going to
bed.

In some sense, the“correct”way of handling this is to make
the alternatives combinations of a time and a cuisine, so that
an agent can say: “I prefer an early Brazilian meal to a late
Chinese meal to...” However, this straightforward approach
rapidly becomes impractical as more issues are combined,
because the number of alternatives undergoes a combinato-
rial explosion. Ideally, the agents would have an expressive
language in which they can naturally and concisely repre-
sent their preferences. One good language for representing
such preferences is that of CP-nets [4] (which bear some re-
semblance to Bayesian networks). A CP-net allows a voter
to specify that her preferences for one issue depend on the
decisions on some other issues—for example, “If we are eat-
ing early, I prefer Brazilian; otherwise, I prefer Chinese.”
Given a language, we need to design new voting rules that
can operate on preferences represented in this language, as
well as algorithms for running these rules.

While such combinatorial voting [20, 38] is in its infancy,
it is easy to see its potential value by considering how ad hoc
the methods are that we use today for these types of situa-
tions. For example, members of Congress must vote on bills
that address many different issues, and would often prefer
to express preferences on individual issues. Unfortunately,
voting on the individual issues separately can easily lead to
undesirable results, because there is no guarantee that the
issues are resolved in a consistent way. For instance, in the
dining example, it may happen that most agents, in general,
prefer to eat at a Brazilian steakhouse; and that, in general,
most agents prefer to eat late; but most agents do not want
to eat at a Brazilian steakhouse late at night. If they vote
on the issues separately, the result may well be a late din-
ner at a Brazilian steakhouse. This is why the language for
expressing preferences needs to allow the agents to specify
some interactions among the issues.

1.2 Allocating tasks and resources
A voting scheme allows an agent to submit arbitrary pref-

erences over the alternatives. While this generality is nice, in
many settings, it is not needed, because we can safely make
some assumptions about agents’ preferences. Let us consider
again the example of allocating chores in a household. One
alternative might be: “Alice will vacuum and take out the
trash, and Bob will do the dishes.” It seems safe to assume
that Bob will prefer this alternative to the alternative: “Al-
ice will take out the trash, and Bob will vacuum and do the
dishes,” since the latter alternative gives Bob an additional
task. On the other hand, if we are allocating desirable re-
sources instead of cumbersome tasks, then presumably more
is preferred to less. For example, if the agents jointly own
a car, an alternative might be: “Alice gets to use the car
on Friday, and Bob gets to use it on Saturday and Sunday,”
which Bob presumably prefers to the alternative “Alice gets
to use the car on Friday and Saturday, and Bob gets to use it
on Sunday.” Here, the use of the car on a particular day is a
“resource.” These assumptions about preferences—receiving
more tasks or fewer resources is never preferred—are com-

monly referred to as monotonicity assumptions.
Another reasonable assumption about preferences is that

an agent only cares about which tasks or resources are al-
located to her. For example, Alice is likely to be indiffer-
ent between “Alice gets the car on Friday, Bob on Satur-
day, and Carol on Sunday” and “Alice gets the car on Fri-
day, Bob on Saturday and Sunday, and Carol never.” In
economics, the assumption that an agent, given her own
resources and tasks, does not care about how the remain-
ing resources and tasks are allocated to the other agents
is known as the no-externalities assumption. It is not al-
ways completely accurate—Alice may dislike the alternative
where Carol never gets the car slightly more, for example
because Carol will ask Alice to run errands for her in that
case—but it is usually assumed.

Reasonable assumptions such as the above allow us to get
away from the full generality of the voting model, and make
decisions in a way that is more specific to task and resource
allocation. Incidentally, there are many applications of task
and resource allocation within computer science. For exam-
ple, we may allocate time on a supercomputer (or other com-
puting resources) instead of time with a car. Also, instead
of allocating the chores of a household to its inhabitants, we
may allocate jobs to machines.

So, how should we allocate tasks and resources? By far
the most common approach to this is to assume that the
agents can make or receive payments in some currency, which
leads us to auction and exchange mechanisms. I will discuss
such mechanisms in more detail later on, but for now, I
first consider methods that do not require payments. These
methods will generally try to find an allocation that is “fair”
in some sense.

One fairness criterion is envy-freeness: we should find an
allocation such that every agent prefers her bundle (that is,
the tasks or resources allocated to her) to each other agent’s
bundle. When resources are not divisible, an envy-free al-
location is not always possible, and deciding whether one
exists is NP-hard [22]. Moreover, one can argue that envy-
freeness alone is not sufficient: even if an allocation is envy-
free, it is possible that reallocating the tasks or resources
can make everyone better off, in which case we say that the
original allocation is not Pareto efficient. For example, con-
sider a situation where one agent owns two left shoes, and
another agent owns two right shoes. Neither agent envies
the other’s situation, but both agents can be made better
off by trading a left shoe for a right shoe. Pareto efficiency is
generally considered to be of paramount importance. There
has been work characterizing the computational complexity
of finding an allocation that is both envy-free and Pareto
efficient [5].

In a context where every resource is initially owned by one
of the agents, it makes sense to use an exchange—even if,
for some reason, payments are not possible. I discuss an ex-
ample of an exchange without payments, a kidney exchange,
next.

1.3 Kidney exchanges
In most exchanges, the participants can make payments

to each other, which facilitates trade. I will discuss such
exchanges shortly. However, there are some exchanges in
which no payments can be made, so that only items change
hands. These are known as barter exchanges. An example
is a kidney exchange [27].

Buying and selling kidneys is illegal in most countries;
however, this is not the case for swapping kidneys. As an
example, suppose a patient is in need of a kidney transplant,
and there is a donor who is willing to give up her kidney
for this particular patient, but unfortunately they are not
compatible. There may be a second patient-donor pair in
the same situation; moreover, it may be the case that the
second patient is compatible with the first donor, and the
first patient is compatible with the second donor. In this
case, it is beneficial for the two patient-donor pairs to swap
their donors’ kidneys.

It is helpful to think of each patient-donor pair as a single
agent, so that each agent has a kidney and needs a(nother)
kidney. This makes it easier to see that more complex trades
can be beneficial: agent 1’s kidney can go to agent 2, agent
2’s kidney to agent 3, and agent 3’s kidney to agent 1—
this is known as a cycle of length 3. Of course, we can
also have cycles of length 4, etc.—but it is preferable to not
have very long cycles (all the operations in a cycle have to
be performed simultaneously so that nobody will back out,
which poses a logistical problem for long cycles; also, if last-
minute testing discovers an incompatibility in the cycle, the
entire cycle collapses).

Kidney exchanges are now a reality, and computer scien-
tists are involved in them [1]. Specifically, they have started
working on the computational problem of clearing the ex-
change: the input describes which patients are compatible
with which of the donors’ kidneys, and the output speci-
fies which cycles will be used. Using matching algorithms,
the problem can be solved in polynomial time if there are
no restrictions on how long cycles can be, or if only cycles
of length two are allowed. However, if the maximum cy-
cle length is three or more, then the problem is NP-hard.
Nevertheless, in practice, large problems can be solved to
optimality, using optimization techniques including column
generation and branch-and-price search [1].

2. SETTINGS WITH PAYMENTS
We now move on to settings where agents can make or

receive payments. Payments are useful because they allow
us to quantify agents’ preferences. Informally, agents now
need to put their money where their mouths are. Payments
also allow us to transfer happiness (utility) from one agent
to another.

2.1 Auctions and exchanges
In many problems that require us to decide on an alloca-

tion of tasks or resources, it makes sense to also determine
payments that some agents should make to other agents.
Returning to our example of allocating chores, imagine that
the inhabitants are roommates who each pay a share of the
rent, and we end up assigning a disproportionate number of
chores to one of the roommates. It seems fair that this room-
mate should pay a smaller share of the rent, which effectively
represents a monetary transfer to this roommate from the
others. This arrangement may well be to everyone’s benefit,
for example, if this roommate is unemployed and has plenty
of time for completing chores but little money to spend on
rent.

Once we start to consider payments in the allocation of
tasks and resources, we are quickly drawn into auction the-
ory. (A brief article on auctions and computer science re-
cently appeared in the Communications of the ACM [35].)

Most people are familiar with the English auction format,
where a single item (or a single lot of items) is for sale, and
bidders call out increasing bids until nobody is willing to
place a higher bid. There are many other auction formats,
such as the Dutch auction, where the price is high initially
and bidders stay silent as the price gradually decreases, until
a bidder announces that she wants to purchase the item at
that price, at which point the auction ends immediately.

Yet another format is the sealed-bid format, where bidders
write down a bid on a piece of paper, place it in an enve-
lope, and give it to the auctioneer; the auctioneer opens the
envelopes and declares the highest bid the winner. Because
at this point, we are mostly concerned with how to make a
decision based on the agents’ preferences, rather than with
how these preferences are communicated, it will be easiest
for us to think about the sealed-bid format for now.

If we are assigning a task rather than allocating a resource,
we can use a reverse auction. Here, a bid of $10 on a task
indicates that the bidder wants to be paid $10 for completing
the task; in this context, the lowest bid wins.

Generally, in an auction, there is a seller who receives the
payment from the winning bidder (or, in a reverse auction,
a buyer who makes the payment to the winning bidder).
A seller is not always present, however: for example, if the
agents are trying to decide who gets the right to drive the car
on a particular day, they can hold an auction for this right,
but in this case it would be natural for the winning agent’s
payment to go to the losing agents. Some recent work has
been devoted to designing mechanisms for redistributing the
auction’s revenue to the agents.

The key benefit of using an auction (or reverse auction)
is that generally, the resource ends up with the agent who
values it the most (or the task ends up with the agent who
minds doing it the least); in this case, we say that the auc-
tion results in an efficient allocation. If an allocation is
inefficient, then it is possible to make everyone better off
by reallocating some of the tasks/resources, as well as some
money. By this argument, efficiency and Pareto efficiency
are the same concept in this context.

When there are multiple resources (or tasks) that need to
be allocated, one straightforward way of doing this is to hold
a separate auction for each resource. However, this approach
has a significant downside, which is related to the following
observation: how much one of the resources is worth to an
agent generally depends on which other resources that agent
receives.

For example, if Alice already has the right to drive the
car on Friday, then probably having it on Thursday as well
is not worth much to her, because she can already run her
errands on Friday. In contrast, if she does not have the car
on any other day, then having it on Thursday is probably
very valuable to her. When having one resource makes hav-
ing another worth less, then we say that the resources are
substitutes. On the other hand, Alice may want to go on a
two-day trip, in which case having the car on Thursday is
worth nothing unless she also has it on Friday. When having
one resource makes having another worth more, then we say
that the resources are complements.

Substitutability and complementarity make it suboptimal
to sell the resources in separate auctions, for the following
reason. If the auction for the right to use the car on Thurs-
day is run first, in some sense Alice does not know how much
she values it, because she does not yet know whether she will

win the auctions for the other days. This uncertainty can
result in inefficient allocations.

Combinatorial auctions [12] provide a solution. In a (sealed-
bid) combinatorial auction, a bidder’s bid does not just in-
dicate how much the bidder values each individual item;
rather, the bidder expresses a value for every nonempty sub-
set (bundle) of the items. For example, Alice’s bid could say:
“Having the car on Thursday is worth $5 to me, having it
on Friday is worth $6, and having it on both Thursday and
Friday is worth $8.” Given all this information (for all bid-
ders), an algorithm can search through all possibilities for
allocating the items to the bidders, and find the most effi-
cient one—that is, the allocation that maximizes the sum of
the agents’ valuations.

Similarly, in a combinatorial reverse auction, each bid-
der expresses how much she wants to be compensated for
every bundle of tasks that might be assigned to her. Yet an-
other variant is a combinatorial exchange, in which agents
can take the role of a seller as well as the role of a buyer, and
they express combinatorial valuations for these more com-
plex trades. These variants face many of the same issues as
combinatorial auctions [12].

Once there are more than a few items in a combinatorial
auction, the straightforward approach in which each bidder
explicitly states how much every bundle of items is worth to
her becomes completely impractical, since there are expo-
nentially many bundles. Instead, we can let bidders use an
expressive bidding language that allows them to express nat-
ural valuation functions concisely (similarly to the CP-nets
that I mentioned in the context of combinatorial voting).
A simple example is the XOR language, in which a bidder
explicitly expresses valuations for some (but generally not
all) bundles. For example, if the items for sale are {a, b, c},
a bidder could bid ({a}, 5) XOR ({b, c}, 10). This indicates
that she values the bundle {a} at 5; the bundle {b, c} at 10;
the bundle {a, b} at 5, since it is not explicitly listed, but
it contains the bundle {a}; and the bundle {a, b, c} at 10,
since the highest-value listed bundle that it contains is {b, c}
(the use of XOR, rather than OR, indicates that we cannot
simply add up the values of the two listed bundles to get
15).

The choice of bidding language affects issues such as the
computational complexity of the winner determination problem—
that is, the problem of finding the efficient allocation of the
items, given the bids. Even if each bidder only bids on a
single bundle, the combinatorial auction winner determina-
tion problem is NP-hard [28] and inapproximable [29]. On
the other hand, it is known that under certain conditions on
the bids, the winner determination problem can be solved
in polynomial time [23]. For example, if bidders bid only on
bundles of at most two items, then the winner determina-
tion problem can be solved in polynomial time, via matching
algorithms. In general, the runtime heavily depends on how
the bids are generated: in some cases, it is possible to scale
to hundreds of thousands of items and tens of thousands of
bids, whereas in other cases, current techniques have trouble
scaling beyond tens of items and hundreds of bids [30].

Instead of letting bidders bid only once—that is, requir-
ing them to give all their valuation information at once—it
is possible to use an iterative (or preference elicitation) for-
mat, in which bidders repeatedly respond to queries about
their valuations [25, 32]. In a single-item setting, this cor-
responds to the distinction between a sealed-bid auction, in

which each bidder bids only once, and an English auction,
in which the auctioneer repeatedly queries the bidders for
higher valuations. Using preference elicitation in a combi-
natorial auction has the potential to greatly decrease the
total amount of valuation information that the bidders need
to communicate, while still finding the efficient allocation.
This leads to the following inherently computational ques-
tion: how should the procedure for querying the bidders be
designed to minimize the required amount of communica-
tion?

Combinatorial auctions are more than a theoretical cu-
riosity: they are used in practice in settings where the items
display significant complementarities. Prominent examples
include auctions for radio spectrum, as well as reverse auc-
tions for strategic sourcing (in which large companies set up
contracts with suppliers) [12, 31, 35].

In a context that is perhaps closer to home for most com-
puter scientists, auctions are now also used by the lead-
ing search engines to allocate the advertising space on their
search results pages. This is another example of an auction
with multiple resources for sale: any search performed by a
user results in multiple advertisement slots becoming avail-
able. These auctions are called sponsored search auctions,
and they introduce a variety of new issues. For example, in
a typical sponsored search auction, an advertiser pays only
if the user clicks on her ad, rather than every time that her
ad is displayed. The prominent place that sponsored search
auctions occupy in the business models of the companies
that use them has helped to bring about an explosion of re-
search on them in recent years [19]; a thorough discussion
would easily merit its own article.

While auctions and exchanges are the settings with pay-
ments that have attracted the most attention from computer
scientists, there are numerous other, more specialized appli-
cations. Some of these are discussed below.

2.2 Charitable giving
Let us consider a person who is contemplating donating

some money (say, $100) to a charitable cause. It may seem
that the potential donor should just evaluate what else she
would do with the money, and whether that is worth more
to her than to see the charity receive $100. While this is a
reasonable way to proceed, there are other options if there
are multiple potential donors.

Suppose that there is a second donor that is making the
same decision. Also, let us suppose that each donor con-
cludes that she would slightly prefer spending $100 on other
things to seeing the charity receive $100. Hence, using the
straightforward decision procedure from above, neither donor
will give any money. However, it may well be that, even
with these preferences, each donor would prefer the outcome
where both donors give. That is, each donor may prefer the
outcome where the charity receives $200, and she contributes
only $100 of this. This is because, other things being equal,
they would like the other donor to give as much money to
the charity as possible. (Unlike settings discussed earlier in
this article, this is inherently a setting with a type of ex-
ternality: a donor has preferences over what another donor
does with her money.) The reason that with the straightfor-
ward decision procedure, neither donor gives to the charity,
is that neither donor affects the other donor’s decision.

In fact, there is a way in which a donor can affect an-
other donor’s decision. Suppose that one of the two donors

can make a binding matching offer, committing to donat-
ing the same amount as the other donor. In this case, the
other donor has a choice between giving $100, resulting in
a $200 total contribution to the charity, and giving nothing,
resulting in a $0 total contribution to the charity. Given
the preferences that we assumed, the donor will in fact give
$100, thereby forcing the other donor to give $100 as well.
It should be noted that both donors (as well as the charity)
prefer this outcome to the outcome that results when they
make their decisions separately (which is for both of them
to give $0).

In practice, a matching offer is generally made by a single
large donor, offering to match donations by multiple smaller
donors. As we just saw, simple matching offers can lead to
improved results, but they are still restrictive. What can
be done if multiple donors want to make their donations
conditional on the others’ donations? This type of expres-
siveness can lead to even better outcomes, but one has to be
careful to avoid circularities. For example, consider the case
where A will match B’s contribution, and B will match A’s
contribution.

We proposed a system in which each donor can make her
donation conditional on the total donated to the charity [10].
In fact, the framework allows for donations to be condi-
tional on the total amounts donated to multiple charities.
We also designed algorithms for determining the final out-
come based on everyone’s offers, which is NP-hard in general
but tractable in special cases. We used this system to col-
lect donations for the victims of the Indian Ocean Tsunami,
and later for the victims of Hurricane Katrina. While the
total amount collected from these events was small (about
$1000), the events gave some insight into how donors use
the system. About 75% of the donors made their donations
conditional on the total amount collected, suggesting that
donors appreciated being able to do so. One interesting ob-
servation is that the effectiveness of the system (in terms of
how much participants were willing to donate) apparently
depended on whose donations donors were matching. The
Tsunami event was conducted among the participants of a
workshop, so that to some extent everyone knew everyone
else; in contrast, the Hurricane event was open to anyone.
The Tsunami event was more successful, perhaps because
the participants knew whose donations they were matching.
More recent systems also allow donors to condition on who
is giving, taking social network structure into account [14].
I believe that this innovation has the potential to make such
systems much more successful.

2.3 Prediction markets
The markets that I have considered so far generally pro-

duce a tangible outcome, such as an allocation of resources.
The participating agents have different preferences over the
possible outcomes, and the market is a mechanism for find-
ing the “right” outcome for these preferences. The type of
market that I discuss in this section is a little different.

A prediction market [37] concerns a particular future event
whose outcome is currently uncertain. For example, the
event could be an upcoming sports game, or an election.
The agents trading in the prediction market generally can-
not (significantly) influence the outcome of the event; the
goal of the market is merely to predict the outcome of the
event, based on the collective information and reasoning of
the participating agents. Typically, the market prediction

is in the form of a probability: for example, the market’s
assessment may be that the probability that team A will
beat team B is 43%. Prediction markets are quite popular
on the Web: examples include the Iowa Electronic Markets
as well as Intrade. Each of these runs prediction markets on
a variety of events; it appears that the political events (for
example, predicting the winner of an election) are the most
popular.

A common way to run a prediction market is as follows.
We create a security that pays out (say) $1 if team A wins,
and $0 if team A does not win. We then let agents trade
these securities. Eventually, this should result in a relatively
stable market price: for example, the security may trade
at about $0.43. This can be interpreted to mean that the
market (that is, the collection of agents) currently believes
that the probability that team A will win is about 43%.

If an agent disagrees with this assessment, then she should
buy or sell some of the securities. For example, if an agent
believes that the probability is 46% (even after observing
the current market price of $0.43), then she can buy one of
the securities at price $0.43, and her expected payout for
this security will be 46% · $1 = $0.46. As she buys more
securities, the market price will eventually go up to $0.46.

If the agent believes that the probability is 40%, then she
should sell some of the securities. If she currently does not
own any of the securities, she can either short-sell, so that
she effectively owns a negative number of the securities; or,
she can buy securities for the complementary outcome(s):
for example, if the match between A and B is guaranteed
to have a winner, she can buy a security that pays out if B
wins. The prices of these securities are related: if the match
is guaranteed to have a winner, then the sum of the current
prices of the security that pays out $1 if A wins, and the
security that pays out $1 if B wins, must always be equal
to $1. If it were not, then there would be an opportunity
for arbitrage: a combination of deals that leads to a risk-free
profit. Specifically, if the sum of the current prices is (say)
$0.9, then one can buy both of the securities, and have a
guaranteed profit of $0.1, because one of them must pay out.
If the sum is (say) $1.1, then one can sell both securities,
which again will result in a guaranteed profit of $0.1.

One complication for standard prediction markets is that
many real-world events have exponentially many possible
outcomes. For example, consider a US presidential election.
In a sense, every state (and the District of Columbia) has
a separate outcome, so that even with two presidential can-
didates there are 251 possible outcomes of the election.2 Of
course, we can have a separate market for each of the states,
but this will still result in some missed opportunities.

For example, I may believe that with probability 80%,
the Democratic candidate will win at least one of Florida,
Ohio, and North Carolina. It is not immediately clear how
this belief should translate into trading strategies for secu-
rities for the individual states. I would much rather simply
buy a security that pays out exactly if the Democratic can-
didate wins at least one of Florida, Ohio, and North Car-
olina. Now, suppose there is another trader who believes
that with probability 30%, the Republican candidate will
win all of Florida, Ohio, North Carolina, and Missouri, and
would like to buy a security that pays out precisely under

2Actually, this is slightly inaccurate: the states of Maine
and Nebraska do not use a winner-takes-all system, further
increasing the number of possible outcomes.

these conditions. Ideally, the prediction market could au-
tomatically create both of these securities, charge me (say)
$0.79 for mine, and charge the other trader (say) $0.29 for
hers. Both of us will accept these deals; moreover, since at
most one of our two securities will pay out, the prediction
market is guaranteed a risk-free profit of at least $0.08. Such
combinatorial prediction markets have recently started to re-
ceive attention [6]. Running such markets requires solving
computationally hard problems: for example, determining
whether there is a risk-free combination of securities that
can be created is generally NP-hard.

3. STRATEGIC BEHAVIOR: GAME THE-
ORY AND MECHANISM DESIGN

So far, I have focused on allowing agents to communicate
their preferences (or, in the case of prediction markets, their
beliefs), ideally in an expressive and natural way, and on
making good decisions based on what was communicated. I
have ignored one key aspect, though: are the agents incen-
tivized to communicate their preferences and beliefs truth-
fully, or can they benefit from misreporting them?

For example, in an election, an agent’s true preferences
may be a � b � c. However, if the agent realizes that a has
no chance of winning, she may instead choose to vote b �
a � c, so as to at least maximize the chances of b winning.
Similarly, in an auction, an agent who values the item for
sale at $10 may instead bid only $5, in the hope of paying
less. While such strategic behavior may be beneficial for the
agent who engages in it, it generally makes the quality of
the overall outcome worse, because now it is chosen based
on input that does not reflect the true preferences.

These considerations lead us into mechanism design. In-
formally stated, the goal of mechanism design is to design
rules for choosing the outcome that lead to good results
even in settings where agents are strategic—that is, an agent
will lie about her preferences if this is in her best inter-
est. Mechanism design has been studied primarily (until
recently, almost exclusively) in economics.3 Evaluating the
quality of a mechanism is nontrivial: it requires being able
to predict how multiple strategic agents will act in each
other’s presence. Game theory provides tools for making
such predictions.4 A nice article about computer science
and game theory recently appeared in the Communications
of the ACM [34].

The standard approach to mechanism design is simply to
ensure that it is never beneficial for an agent to lie about
her preferences. A result known as the revelation principle
suggests that this approach is, from the point of view of
strategic behavior, without loss of generality. A mechanism
under which it is never beneficial to lie is called truthful.
Unfortunately, it turns out that in general voting settings,
no good truthful mechanisms exist, by a result known as the
Gibbard-Satterthwaite impossibility theorem [15, 33].

For settings such as auctions and exchanges, where pay-
ments can be made, there are much more positive results.
For one, if our goal is to allocate the resources efficiently,

3In 2007, Hurwicz, Maskin, and Myerson received the Nobel
Prize in Economics for their fundamental work on mecha-
nism design.
4Game theory has led to two other Nobel Prizes in Eco-
nomics: Nash, Selten, and Harsanyi received one in 1994,
and Aumann and Schelling in 2005.

there are rules for specifying how much agents should pay
that make the mechanism as a whole truthful.

A simple example of such a payment rule is the second-
price sealed-bid auction for a single item. In this auction,
the bidder with the highest bid wins, but only pays the
second-highest bid. As a result, the winning bidder’s bid
does not affect the price she pays; so the only effect that
misreporting can possibly have is that she does not win,
which would make her worse off. Similarly, the only effect
that misreporting can possibly have for a losing bidder is
that she ends up winning at a price that is too high for
her, which would make her worse off. So, a bidder is always
best off reporting her true valuation for the item—that is,
the second-price sealed-bid auction is truthful. This scheme
can be generalized to combinatorial auctions and exchanges
(and other settings), resulting in the class of Vickrey-Clarke-
Groves (VCG) mechanisms [36, 7, 16].

The issues studied in mechanism design interact with the
computational issues that I discussed before in subtle ways.
For example, suppose that we want to run a combinatorial
auction using a VCG mechanism. Technically, this means
that we should always solve the winner determination prob-
lem to optimality, that is, find the most efficient allocation—
which we know is NP-hard. If we do not always succeed
at finding the most efficient allocation, then the resulting
mechanism will, in general, not be truthful. A significant
amount of research has addressed the problem of designing
polynomial-time approximation algorithms that, in combi-
nation with the right payment rule, are truthful [21]. More
generally, the problem of designing efficient algorithms that
can be made truthful is the main topic of algorithmic mech-
anism design [24]. This line of research has also been ex-
tended to distributed settings without a trusted center [13].

We can use computers not only to run existing mecha-
nisms, but also to design new mechanisms from scratch.
That is, for a given setting, we let an algorithm search
through the space of all possible truthful mechanisms for an
optimal one [9]. This approach is called automated mech-
anism design. Finding an optimal mechanism is compu-
tationally much harder than running an existing mecha-
nism, and as a result automated mechanism design has so
far been successful only on small instances. Nevertheless,
some real instances are in fact small, and even for larger
instances, solving a simplified version can give some helpful
intuition. Automated mechanism design can also be used
to solve some small instances of a general mechanism design
problem; then, a human mechanism designer can try to iden-
tify a pattern in these small solutions, conjecture the general
solution, and prove it analytically. In this way, automated
mechanism design can contribute to microeconomic theory.
This methodology has recently been used to design mecha-
nisms for redistributing an auction’s revenue to the bidders
in a truthful way (for example, [17]), and the methodology
is starting to be adopted more widely.

It is not always the mechanism designer or the party run-
ning the mechanism that faces hard computational prob-
lems. Under some mechanisms, it is computationally hard
for the agents to find the strategically optimal action to take.
This is not the case for truthful mechanisms, where strategi-
cally optimal behavior simply means telling the truth. How-
ever, no reasonable voting rule is truthful in sufficiently gen-
eral settings (by the Gibbard-Satterthwaite theorem men-
tioned above). It has been shown that in a variety of vot-

ing settings, it is NP-hard to find the strategically optimal
vote(s) to cast, even if the other agents’ votes are already
known (for example, [2, 18, 11]). This is a case where com-
putational hardness can be desirable: it can be argued that
if a voter cannot find a way of misreporting her preferences
that benefits her, then she will presumably tell the truth.
For now, the impact of this type of result is limited by the
fact that NP-hardness is a worst-case measure, and it may
well be the case that it is easy to find an effective way of
misreporting one’s preferences most of the time.

Another important issue is that the mechanisms from tra-
ditional mechanism design mainly guard against a single
type of manipulation: misreporting one’s preferences. How-
ever, mechanisms that are run in highly anonymous envi-
ronments such as the Internet are vulnerable to other types
of manipulation. Specifically, it is often possible for a single
agent to pretend to be multiple agents (known as false-name
manipulation or a Sybil attack). The standard mechanisms
for guarding against misreporting, such as the VCG mecha-
nisms, are generally not robust to false-name manipulation.
A mechanism that is robust to it—that is, under which no
agent ever benefits from using multiple identifiers—is said
to be false-name-proof [39], and a growing body of research
attempts to design such mechanisms.

A final direction in mechanism design concerns extend-
ing its techniques to dynamic environments, where decisions
have to be made over time as additional information enters
the system. Recent years have seen rapid progress in gener-
alizing mechanism design techniques from static to dynamic
settings [26]. For example, sponsored search auctions are,
in principle, a good application domain for such techniques:
the demand for, as well as the supply of, advertisement slots
next to the results for specific searches changes over time,
but allocation decisions must be made now.

4. CONCLUSIONS
In this article, I have considered a number of settings in

which a decision needs to be made based on the preferences
of multiple agents, as well as mechanisms for reaching the de-
cision. People have been using such mechanisms for millen-
nia, and have studied them formally for centuries (although
their game-theoretic analysis has taken place mostly in the
last fifty years). Still, computer scientists are fundamentally
changing these mechanisms and how they are being used.

Increased computing power and better algorithms enable
the use of mechanisms, such as the Kemeny voting rule and
combinatorial auctions, that used to be considered imprac-
tical. Also, the Internet provides a great platform for these
mechanisms: it makes it easy for spatially distributed users
to communicate their preferences to the mechanism, and
they will generally be forced to communicate them in a pre-
cise way (for example, a bidder will have to enter a number
on a website rather than vaguely communicating her pref-
erences over the phone), which makes it possible to run the
mechanism automatically. I (speculatively) imagine that in
the future, more Web-based mechanisms will be oriented
around social networking sites such as Facebook and MyS-
pace; the charitable donations work [14] is a good example
of how such social network structure can be used. Computer
scientists are also encountering mechanism design problems
in their own work, for example, when shared computing re-
sources need to be allocated to users. Finally, the paradigms
of computer science give a different and useful perspective

on some classic problems in economics.
This article has summarized a number of applications where

computer scientists have already become involved in the de-
sign of markets and other protocols for making decisions
based on the preferences of multiple agents. I anticipate
that the number and importance of such applications will
grow steeply in the years to come. One major reason for
this is that computer scientists and economists interested
in market design have grown closer together in recent years,
and are now seen working together more often (this is neces-
sitated by high-value applications such as sponsored search
auctions). Computer scientists have caught up on many
of the key techniques developed in the microeconomics lit-
erature. On the other side, economists are becoming in-
creasingly familiar with techniques from modern computer
science. This is a very nice example where “computational
thinking” is being exported to another discipline (which is
certainly not to say that there were no prior instances of
economists thinking computationally).

Acknowledgments
This work is supported by NSF award number IIS-0812113,
a Research Fellowship from the Alfred P. Sloan Foundation,
and a Yahoo! Faculty Research Grant. I thank the CACM
reviewers for very detailed and helpful feedback. I also thank
Tuomas Sandholm for feedback on the kidney exchange sec-
tion, and David Pennock for feedback on the prediction mar-
kets section. All errors and omissions are my own (though
of course I faced constraints on length and number of cita-
tions).

5. REFERENCES
[1] D. Abraham, A. Blum, and T. Sandholm. Clearing

algorithms for barter exchange markets: Enabling
nationwide kidney exchanges. In Proceedings of the
ACM Conference on Electronic Commerce (EC),
pages 295–304, San Diego, CA, USA, 2007.

[2] J. Bartholdi, III, C. Tovey, and M. Trick. The
computational difficulty of manipulating an election.
Social Choice and Welfare, 6(3):227–241, 1989.

[3] J. Bartholdi, III, C. Tovey, and M. Trick. Voting
schemes for which it can be difficult to tell who won
the election. Social Choice and Welfare, 6:157–165,
1989.

[4] C. Boutilier, R. Brafman, C. Domshlak, H. Hoos, and
D. Poole. CP-nets: a tool for representing and
reasoning with conditional ceteris paribus statements.
Journal of Artificial Intelligence Research, 21:135–191,
2004.

[5] S. Bouveret and J. Lang. Efficiency and envy-freeness
in fair division of indivisible goods: logical
representation and complexity. In Proceedings of the
Nineteenth International Joint Conference on
Artificial Intelligence (IJCAI), pages 935–940,
Edinburgh, Scotland, UK, 2005.

[6] Y. Chen, L. Fortnow, E. Nikolova, and D. M.
Pennock. Combinatorial betting. ACM SIGecom
Exchanges, 7(1):61–64, 2007.

[7] E. H. Clarke. Multipart pricing of public goods. Public
Choice, 11:17–33, 1971.

[8] V. Conitzer, A. Davenport, and J. Kalagnanam.
Improved bounds for computing Kemeny rankings. In

Proceedings of the National Conference on Artificial
Intelligence (AAAI), pages 620–626, Boston, MA,
USA, 2006.

[9] V. Conitzer and T. Sandholm. Complexity of
mechanism design. In Proceedings of the 18th Annual
Conference on Uncertainty in Artificial Intelligence
(UAI), pages 103–110, Edmonton, Canada, 2002.

[10] V. Conitzer and T. Sandholm. Expressive negotiation
over donations to charities. In Proceedings of the ACM
Conference on Electronic Commerce (EC), pages
51–60, New York, NY, USA, 2004.

[11] V. Conitzer, T. Sandholm, and J. Lang. When are
elections with few candidates hard to manipulate?
Journal of the ACM, 54(3):Article 14, 1–33, 2007.

[12] P. Cramton, Y. Shoham, and R. Steinberg.
Combinatorial Auctions. MIT Press, 2006.

[13] J. Feigenbaum, M. Schapira, and S. Shenker.
Distributed algorithmic mechanism design. In
N. Nisan, T. Roughgarden, E. Tardos, and
V. Vazirani, editors, Algorithmic Game Theory,
chapter 14. Cambridge University Press, 2007.

[14] A. Ghosh and M. Mahdian. Charity auctions on social
networks. In Proceedings of the Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages
1019–1028, 2008.

[15] A. Gibbard. Manipulation of voting schemes: a
general result. Econometrica, 41:587–602, 1973.

[16] T. Groves. Incentives in teams. Econometrica,
41:617–631, 1973.

[17] M. Guo and V. Conitzer. Worst-case optimal
redistribution of VCG payments in multi-unit
auctions. Games and Economic Behavior, 2009. To
appear.

[18] E. Hemaspaandra and L. A. Hemaspaandra.
Dichotomy for voting systems. J. Comput. Syst. Sci.,
73(1):73–83, 2007.

[19] S. Lahaie, D. M. Pennock, A. Saberi, and R. V.
Vohra. Sponsored search auctions. In N. Nisan,
T. Roughgarden, E. Tardos, and V. Vazirani, editors,
Algorithmic Game Theory, chapter 28. Cambridge
University Press, 2007.

[20] J. Lang. Vote and aggregation in combinatorial
domains with structured preferences. In Proceedings of
the Twentieth International Joint Conference on
Artificial Intelligence (IJCAI), pages 1366–1371,
Hyderabad, India, 2007.

[21] D. Lehmann, L. I. O’Callaghan, and Y. Shoham.
Truth revelation in rapid, approximately efficient
combinatorial auctions. Journal of the ACM,
49(5):577–602, 2002.

[22] R. Lipton, E. Markakis, E. Mossel, and A. Saberi. On
approximately fair allocations of indivisible goods. In
Proceedings of the ACM Conference on Electronic
Commerce (EC), pages 125–131, New York, NY, USA,
2004.

[23] R. Müller. Tractable cases of the winner determination
problem. In P. Cramton, Y. Shoham, and
R. Steinberg, editors, Combinatorial Auctions,
chapter 13, pages 319–336. MIT Press, 2006.

[24] N. Nisan and A. Ronen. Algorithmic mechanism
design. Games and Economic Behavior, 35:166–196,

2001.

[25] D. Parkes. Iterative combinatorial auctions. In
P. Cramton, Y. Shoham, and R. Steinberg, editors,
Combinatorial Auctions, chapter 2, pages 41–77. MIT
Press, 2006.

[26] D. Parkes. Online mechanisms. In N. Nisan,
T. Roughgarden, E. Tardos, and V. Vazirani, editors,
Algorithmic Game Theory, chapter 16. Cambridge
University Press, 2007.

[27] A. E. Roth, T. Sonmez, and M. U. Unver. Kidney
exchange. Quarterly Journal of Economics,
119(2):457–488, 2004.

[28] M. Rothkopf, A. Pekeč, and R. Harstad.
Computationally manageable combinatorial auctions.
Management Science, 44(8):1131–1147, 1998.

[29] T. Sandholm. Algorithm for optimal winner
determination in combinatorial auctions. Artificial
Intelligence, 135:1–54, Jan. 2002.

[30] T. Sandholm. Optimal winner determination
algorithms. In P. Cramton, Y. Shoham, and
R. Steinberg, editors, Combinatorial Auctions,
chapter 14, pages 337–368. MIT Press, 2006.

[31] T. Sandholm. Expressive commerce and its
application to sourcing: How we conducted $35 billion
of generalized combinatorial auctions. AI Magazine,
28(3):45–58, 2007.

[32] T. Sandholm and C. Boutilier. Preference elicitation
in combinatorial auctions. In P. Cramton, Y. Shoham,
and R. Steinberg, editors, Combinatorial Auctions,
chapter 10, pages 233–263. MIT Press, 2006.

[33] M. Satterthwaite. Strategy-proofness and Arrow’s
conditions: Existence and correspondence theorems
for voting procedures and social welfare functions.
Journal of Economic Theory, 10:187–217, 1975.

[34] Y. Shoham. Computer science and game theory.
Communications of the ACM, 51(8):74–79, 2008.

[35] H. R. Varian. Designing the perfect auction.
Communications of the ACM, 51(8):9–11, 2008.

[36] W. Vickrey. Counterspeculation, auctions, and
competitive sealed tenders. Journal of Finance,
16:8–37, 1961.

[37] J. Wolfers and E. Zitzewitz. Prediction Markets. The
Journal of Economic Perspectives, 18(2):107–126,
2004.

[38] L. Xia, V. Conitzer, and J. Lang. Voting on
multiattribute domains with cyclic preferential
dependencies. In Proceedings of the National
Conference on Artificial Intelligence (AAAI), pages
202–207, Chicago, IL, USA, 2008.

[39] M. Yokoo, Y. Sakurai, and S. Matsubara. The effect of
false-name bids in combinatorial auctions: New fraud
in Internet auctions. Games and Economic Behavior,
46(1):174–188, 2004.

[40] H. P. Young. Optimal voting rules. Journal of
Economic Perspectives, 9(1):51–64, 1995.

