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Abstract

Al systems can interact in unexpected ways, sometimes with
disastrous consequences. As Al gets to control more of our
world, these interactions will become more common and have
higher stakes. As Al becomes more advanced, these interac-
tions will become more sophisticated, and game theory will
provide the tools for analyzing these interactions. However,
Al agents are in some ways unlike the agents traditionally
studied in game theory, introducing new challenges as well
as opportunities. We propose a research agenda to develop
the game theory of highly advanced Al agents, with a focus
on achieving cooperation.

Introduction

Al safety is a nascent research area aiming to prevent harm-
ful unintended behavior in advanced Al systems (Amodei
et al. 2016; Russell 2019). One way in which Al systems
can fail to be safe is through unexpected interactions with
each other. A well-known example of disastrous algorith-
mic interaction is the 2010 “flash crash,” in which the Dow
Jones Industrial Average dropped by about 9% in a very
short period of time, and in which high-frequency traders
(who use algorithmic trading) played a major role (CFTC
and SEC 2010). As Al systems control an ever growing part
of our world, it stands to reason that they will run up against
each other increasingly often, with the potential for disas-
trous interactions in many new domains, including ones in
which this will have immediate significant physical impact
on the world. (Consider, for example, autonomous vehicles,
use of Al in the electrical grid, or military applications of
Al) On the other hand, Al may also provide help in ad-
dressing challenging collective action problems that humans
already face, such as climate change and other environmen-
tal problems, and nuclear disarmament and the prevention of
wars. It may do so, for example, by providing better moni-
toring and transparency (Russell, Vaidya, and Bras 2010).
These issues lead us to want to design cooperative
AI (Dafoe et al. 2020, 2021; cf. Clifton 2020, Critch and
Krueger 2020).! One can take a variety of approaches to
cooperative Al, including behavioral (i.e., by studying how
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't is worth noting that there are also settings in which we do
not want Al agents to cooperate (with each other or with humans).

humans cooperate with each other) and experimental ones.
However, we argue that the theoretical foundations of co-
operative Al are most naturally established with a game-
theoretic approach.? Game theory provides the basic lan-
guage and tools for reasoning about settings in which mul-
tiple agents each pursue their own objectives. However, we
argue that to be able to model advanced Al systems, and the
ways in which they may attain cooperative behavior, new
work at the foundations of game theory is required.

One might argue that ideally, no game-theoretic phenom-
ena should occur in the deployment of Al if we are suffi-
ciently careful to align its objectives with our values. How-
ever, we now give an example that shows that even if each
individual agent is almost perfectly aligned with our (say,
humanity’s) objective, it is possible that the only equilib-
rium of the resulting game between the agents results in a
terrible outcome. That is, aligning individual agents is not
sufficient for the multiagent system as a whole to be well
aligned with our objectives, due to game-theoretic phenom-
ena. (Alternatively, the same game can be thought of as be-
tween two agents, each of which is perfectly aligned with a
distinct subset of humanity, but the two subsets of humanity
have slightly conflicting objectives.)

For instance, we generally want firms to compete with each other
on, e.g., prices. As firms increasingly use Al-driven pricing algo-
rithms, cooperation (collusion) between these Al algorithms can
pose a problem that needs to be addressed (Ezrachi and Stucke
2017; Schwalbe 2018; Hansen, Misra, and Pai 2021; Beneke and
Mackenrodt 2021; Dorner 2021; Musolff 2022; Asker et al. 2022).
Moreover, some approaches to Al safety rely on some form of com-
petition between Al systems (e.g., Irving, Christiano, and Amodei
2018). Throughout this article, our perspective will be to achieve
cooperation. But many of the same questions (e.g., “under what cir-
cumstances will ML systems learn to cooperate with each other?””)
can be asked from the opposite perspective of trying to prevent co-
operation.

2Confusingly, while we take a game-theoretic approach to co-
operative Al, what we are interested in is not cooperative game
theory (though the latter may yet play a role in cooperative Al).
Cooperative game theory concerns the formation and actions of
coalitions of agents, under the assumption that some mechanism
is available to these coalitions for enforcing agreements. While co-
operative game theory may yet play a role in cooperative Al, in
this paper we will focus primarily on (confusingly) noncoopera-
tive game theory.
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Table 1: The Traveler’s Dilemma.

Cooperate Defect
Cooperate 3,3 0,4
Defect 4,0 1,1

Table 2: The Prisoner’s Dilemma.

Consider the following setting. Two Al agents together
provide a service. Each agent ¢ € {1,2} chooses a level of
quality ¢; with which to provide its part of the service. The
overall quality of the service provided is ¢ = min;c 1 2) ¢;-
That is, the service is only as good as its weaker part. Let us
say that our (humanity’s) objective is g; we are not a player
in the game. As for the agents, suppose that agent ¢’s utility

is q + 14,<4_,€, where 1, -, , = 1if g; is lower than the
other agent’s choice of quality, 14,4 , = 1/2 if the two
agents choose the same quality, and 1,, ., , = 0 otherwise.

That is, each agent cares almost exclusively about g, but has
a slight incentive to be the one choosing the lower quality.

Table 1 shows an example of this game where € = 4 and
qualities are integers from 0 to 7. Note that within each en-
try, the numbers are close to each other and to ¢ (at most
e = 4 apart), indicating that the agents are almost perfectly
aligned;® also, of course, there are high-quality outcomes
when both agents choose high numbers. Nevertheless, dis-
astrously, the only equilibrium is ¢ = g2 = 0. (In fact,
¢; = 0 is the only rationalizable strategy in this game.)
Typical learning algorithms that only concern the learning
agent’s utility (e.g., no-regret learning, Q-learning with ran-
dom exploration, gradient ascent) would converge to this
equilibrium.

The game described is known in the literature as the Trav-
eler’s Dilemma (Basu 1994). For most of the paper, it will
suffice to consider the simpler Prisoner’s Dilemma, shown
in Table 2. As is well known, in the Prisoner’s Dilemma,
each agent has a strictly dominant strategy to defect, in spite
of the fact that both agents are better off if both agents co-
operate than if both agents defect.

To lay out the research agenda, in the remainder of
this paper, we overview some possible ways in which Al
agents could yet reach cooperation in such settings. They

31t is in fact possible to make the alignment arbitrarily close to
perfect by increasing the number of values of g to choose from.

are roughly ordered to start with relatively traditional ap-
proaches from the game theory literature that make sense
for human agents as well, to novel approaches that seem far-
fetched for human agents but may fit AI well. We close with
a call to action, to integrate and expand on these research
topics to realize the vision of cooperative Al

Cooperation in Repeated Games

Perhaps the best-known way to achieve cooperation in
games such as the Prisoner’s Dilemma is by repeating the
game. This, indeed, is many game theorists’ go-to explana-
tion for why, in our human world, we see more coopera-
tion in these types of games than the straightforward anal-
ysis might suggest. The intuitive reasoning is that while we
may often have a short-term incentive for taking advantage
of another (defecting), in the longer term we are likely to
run into the same person again, and defecting on the person
now is likely to result in that person defecting on us in the
future. The theory of repeated games formalizes this. Specif-
ically, we consider infinitely repeated games, where a game
is repeated over and over again and (say) the payoff in round
t is discounted using a factor 4% for some v < 1. In such
games, a strategy specifies what a player would do for ev-
ery history of the game. Consider the following (“grim trig-
ger”) strategy for the Prisoner’s Dilemma: if in the history so
far there has never been any defection, then cooperate; oth-
erwise, defect. Some reflection reveals that, for sufficiently
large , both players playing the grim-trigger strategy is an
equilibrium of the Prisoner’s Dilemma, and one in which
both players in fact cooperate forever.*

What else can be achieved in equilibria of repeated
games? This question is answered by the folk theorem — re-
ally, a collection of theorems — characterizing which pay-
off profiles are possible to sustain in equilibria of repeated
games, including ones other than the Prisoner’s Dilemma.
Generally they allow for a vast variety of equilibrium pay-
offs, restricted only by what payoffs are feasible in the game
and the constraint that a player cannot be made worse off
than she would be if everyone else conspired to make her
miserable. In particular, because the second constraint only
places lower bounds on players’ utilities, these theorems
generally allow high-welfare equilibria. Moreover, intrigu-
ingly, folk theorems can facilitate equilibrium computation,
which, at least for two players, is easier in repeated games
than in one-shot games (Littman and Stone 2005; Andersen
and Conitzer 2013). (For three or more players, the story be-
comes more complicated (Borgs et al. 2010; Kontogiannis
and Spirakis 2008).)

Is this, then, perhaps a completely satisfactory solution to
the problem of cooperation? Unfortunately, it seems that that
is not the case. First of all, some games are not repeated. A
nuclear war is fought only once. (We will turn to disarma-

“This equilibrium is also subgame perfect. Another well-known
strategy for the repeated Prisoner’s Dilemma is tit for tat, which co-
operates in the first round and then plays whatever the other player
played in the previous round. Tit for tat is famous for its success
in tournaments run by Axelrod (1984). The equilibrium in which
both players play tit for tat is not subgame-perfect, however.



ment in the next section.) Even if the game is repeated, the
vast multiplicity of equilibria allowed by the folk theorem
creates a problem of equilibrium selection — as a player in
a repeated game, which of the many equilibria should you
play? We will return to this topic in a later section. Even as-
suming the equilibrium selection problem can be resolved,
repeated games allow for cooperative equilibria only under
certain conditions. The lower the discount factor and the
lower the benefit of cooperation, the less cooperation can
be sustained. Also, worrisomely, there is often only a thin
line dividing total cooperation from total defection. Moon
and Conitzer (2015) study a model in which players inter-
act on a social network, so that when player 1 defects on
player 2, player 3 may learn about that event from player 2,
and consequently player 3 may also defect on player 1 after-
wards, strengthening the initial incentive not to defect. They
give an algorithm for identifying the (unique) maximal set
of players that can sustain cooperation. In experiments, they
identify a phase transition where, as parameters gradually
change, the cooperative set suddenly changes from all play-
ers to no players. This, then, seems a rather brittle solution
to the problem of cooperation to hang our hat on.

Disarmament

In some cases, the game will be played only once and the
stakes will be high, but we can prepare for it, by taking ac-
tions ahead of time that will change the strategic structure
of the game for the better. A natural example of this is that
the players can reduce the set of actions available to them.
But generally it does not hurt a player to have more options
available, so why would a player reduce her set of options?
One reason is that the players alternatingly and verifiably
reduce their options, and each does so for the reason that
this will induce the other to continue with this process as
well. This is the idea of disarmament in game theory (Deng
and Conitzer 2017, 2018). Indeed, real-world disarmament
— say, of nuclear warheads — is instructive to consider. Both
sides prefer a situation in which both sides have fewer war-
heads, but getting there can be challenging: each side will
want to make sure that the other side is in fact disarming
as well, and does not want to end up in a situation where it
has removed most of its warheads before the other side has
done anything. Similarly (or really, more generally), when
considering players disarming themselves in a game by se-
quentially reducing their strategy space, it is important that
the one player has verifiably taken its intended strategy re-
duction step before the other player proceeds; and that these
steps are scheduled carefully to give no player an incentive
to halt disarmament at any point. Successful disarmament
(in the sense of reaching a desirable outcome in equilib-
rium) cannot always be achieved, and it is in general NP-
hard to determine whether it can. However, if it is possible
to eliminate mixed strategies, a type of folk theorem holds
that cooperation can always be attained (Deng and Conitzer
2017, 2018). The latter is arguably more natural in the con-
text of Al, as lines of code can be alternately committed that
prevent certain mixed strategies from being used.

Cooperation between Copies

Imagine an AI system playing the Prisoner’s Dilemma
against a very similar opponent, e.g., an agent that was
trained using the same learning algorithm on the same or
similar data. Should the AI agent defect? Here is a line of
reasoning that suggests cooperation: if the agent cooperates,
chances are that the opponent agent will cooperate too; if
the agent defects, chances are that the opponent will de-
fect too; and since the agent favors mutual cooperation over
mutual defection, the agent should cooperate (cf. Hofstadter
1983). Natural as this reasoning may seem, it is at odds with
the standard analysis of the Prisoner’s Dilemma, which says
that you should defect because no matter what the opponent
does, you are better off defecting.

Which line of reasoning one follows depends on what
type of decision theory one endorses. Evidential decision
theory favors cooperating, precisely because conditional on
cooperating, one expects to be better off than conditional
on defecting. In contrast, causal decision theory says that
such reasoning is mistaken: while it may be true that the two
agents’ decisions are correlated, one agent’s decision to co-
operate is not causing the other to cooperate as well, and
so the traditional game theoretic analysis remains correct.
Ever since Nozick (1969) pointed out the conflict between
CDT and EDT, the question of which of them is correct has
been in contention (e.g., Gibbard and Harper 1976; Peter-
son 2009; Ahmed 2014; Oesterheld and Conitzer 2021); in
fact, a number of theories other than CDT and EDT have
in the meantime been proposed (e.g. Weirich 2016, Section
3.6; Levinstein and Soares 2020).

Of course, most humans never face such an extreme sce-
nario. However, for software it is normal to be copied and
so an Al agent may very well face a copy or a near-copy of
itself (cf. Cavalcanti 2010, Sect. 5; Oesterheld 2021, Sect.
1; Conitzer 2019b). For example, different humans may in-
stantiate different copies or near copies of the same software
agent to act on their behalfs.

Unfortunately, the philosophical decision theory literature
gives little guidance on how to design Al agents that imple-
ment, say, EDT. How can we build learning agents that, for
instance, cooperate in a Prisoner’s Dilemma against a copy?
Some preliminary work already exists on this question. For
example, Bell et al. (2021) show that softmax Q-learners
behave more like CDT agents. Albert and Heiner (2001),
Mayer, Feldmaier, and Shen (2016), Oesterheld, Demski,
and Conitzer (2021), and Oesterheld et al. (2022) describe
methods of learning that result in EDT-like behavior (see
also Oesterheld 2021). We hope that future work in this area
will shed light on the feasibility of building learning agents
that cooperate against near-copies in real-world, complex,
asymmetric scenarios.

Cooperation by Reading Each Other’s Code

Consider the strategic interactions between charitable funds.
For example, imagine that Fund 1 and Fund 2 are both de-
ciding how to allocate $10,000. (We may imagine that they
are allocating their final $10,000 so that they cannot use rep-
etition.) Both value the fight against global warming at a rate



Algorithm 1: Cooperative equilibrium by testing whether the
opponent is a copy.
Input: This program p;, opponent program p_;
Output: Cooperate or Defect
1: ifpl =P then
2:  return Cooperate
3: end if
4: return Defect

Algorithm 2: The eGroundedFairBot of Oesterheld (2019).
Input: This program p;, opponent program p_;
Output: Cooperate or Defect

1: With probability e:

2:  return Cooperate

3: returnp_;(p_;, p;)

of 2 units of utility per dollar donated. However, Fund 1 val-
ues contributions to cleaning up the streets of Town 1 at 3
units per dollar, while Fund 2 values cleaning up the streets
in Town 2 at 3 units per dollar. Then the two funds face a
Prisoner’s Dilemma-like strategic problem. Specifically, in
the unique equilibrium of the game, both funds clean up
the streets in their local town. Meanwhile, they would both
prefer it if they both gave to global warming charities, and
would benefit from an arrangement to do so — e.g., if they
could each make a donation to global warming charities that
is conditioned on the other doing so as well (Ghosh and
Mahdian 2008; Monderer and Tennenholtz 2009; Kalai et al.
2010; Conitzer and Sandholm 2011; Bastianello and Ismail
2021).

Now imagine that the charitable funds are managed by
Al Imagine further that each of the two funds uses an open-
source Al system, e.g., because (prospective) donors to the
funds demand transparency or because the funds hope that
outsiders will help find software bugs in the AI’s code. What
does this mean for the strategic interaction described above?
Can it help bring the funds to cooperation?

Playing games while being able to read one another’s
source code poses new theoretical challenges. (Some of the
decision theory literature cited in the previous section is re-
lated, but gives little formal guidance.) For instance, one
might think that an agent should try to predict the oppo-
nent’s action and then play a best response. However, it is
unclear how to predict the opponent when the opponent is
also predicting you. For example, if each program first runs
the opponent’s program, the two programs fail to terminate.
A second problem is that while in the Prisoner’s Dilemma,
playing a best response is possible without knowing any-
thing about the opponent, doing so results in mutual defec-
tion. As we will see below, there’s reason to hope for better.

To get a better grasp on open-source game theory, we now
consider a particularly simple framework (Rubinstein 1998;
Tennenholtz 2004). Imagine that Alice and Bob play a Pris-
oner’s Dilemma, but instead of choosing actions (Cooper-
ate or Defect), they each submit a computer program that in
turn chooses an action. Importantly, the computer programs

are given access to each other’s source code before choos-
ing an action. Alice and Bob then play a new normal-form
game — which we call a program game — where each of them
chooses from some set of computer programs and their util-
ity is determined by the actions chosen by the two computer
programs. The key idea is that we can thus avoid the per-
spective of the open-source agent itself, and instead adopt
the external perspectives of Alice and Bob. In particular, we
can analyze the game played by Alice and Bob with ordinary
game-theoretic means such as Nash equilibrium.

It turns out that the program game has cooperative equilib-
ria. The simplest one (given by Rubinstein (1998, Sect. 10.4)
and Tennenholtz (2004), as well as earlier work by McAfee
(1984) and Howard (1988)) has each player submit a pro-
gram that cooperates if the opponent’s program is equal to
this program; see Algorithm 1. (Compare the above discus-
sion of cooperation with copies.) Clearly, when both players
submit this program, they both cooperate. If one of them,
say Player 1, deviated to any other program, then Player 2
would defect. Hence, if both players submit the program of
Algorithm 1, the players are in equilibrium.

Unfortunately, the practical relevance of this equilibrium
is limited, because of how fragile it is. Both players have to
submit the exact same program. If we consider the scenario
of different Al-managed funds, the different Als might nec-
essarily have very different code. For instance, each fund’s
Al may have code specific to each of the fund’s cause areas.

Recent work has tried to remedy this problem by com-
ing up with more robust cooperative equilibria. Barasz
et al. (2014) and Critch (2019) give equilibria in which
the programs only cooperate if they can prove that their
opponent also cooperates (Critch, Dennis, and Russell
2022). A recent, even simpler proposal is eGroundedFairBot
(Oesterheld 2019), a computer program for the Prisoner’s
Dilemma which cooperates with 1% probability and with
the remaining 99% probability simulates the opponent and
copies its action (Algorithm 2). When playing against itself,
eGroundedFairBot terminates with probability 1 and coop-
erates. Moreover, if both players submit eGroundedFairBot,
they are in equilibrium.

These results show that transparency allows for new co-
operative equilibria. However, the program equilibrium per-
spective sidesteps the question of how the agent itself should
learn or reason. Instead, it requires the original players (the
designers) to be rational (cf. Demski and Garrabrant 2019,
Sect. 2.2). Perhaps this is appropriate given that we in fact
find ourselves in this perspective. However, a theory of how
the agent itself should reason seems valuable not just from a
theoretical but also from a practical perspective. Ideally, we
could build a learning system that figures out on its own that
it can use, say, eGroundedFairBot (compare the discussion
of learning to play the Prisoner’s Dilemma against similar
opponents).

Self-Locating Beliefs

Consider again an Al agent that is reasoning strategically in
an environment with other copies of itself. Another issue it
may face is that it does not even know which copy it is! In
fact, such uncertainty can be helpful in attaining cooperative



behavior. Consider an exchange in which a variety of trad-
ing agents operate. Imagine that there is a particular trading
strategy that is effective for the agent using it, but detrimen-
tal to the market as a whole, so we wish to outlaw it. Unfor-
tunately, it is difficult to detect the strategy being used in the
wild. However, a monitoring entity (say, the SEC) is able to
place copies of the trading agents in simulated versions of
the exchange, where the behavior is more easily detectable
and the agent can be fined (in real dollars).’ Thus, an agent is
generally unsure whether it is in the real or the simulated en-
vironment, and may conclude that in expectation it is better
not to use the strategy. How should it assess the probabil-
ity that it is in the simulated environment? This question is
studied in the literature on self-locating beliefs. We will now
argue that this literature must play a key role in the game
theory of highly advanced Al systems, as this issue is much
more pervasive in this context than it may at first appear.

Questions of self-locating beliefs come up in scenarios
where one or more agents are, or may be, in the same epis-
temic state across time and/or space — i.e., what they know,
including about their own identity, is the same. (In game-
theoretic parlance, these situations correspond to the game
tree having multiple nodes in the same information set, in-
cluding along the same path down the tree.) There are multi-
ple ways in which these issues come up for Al systems. First,
an Al agent can be deliberately designed to forget its past,
for example for privacy reasons, so that it repeatedly finds
itself in the same epistemic state, confronted with the same
decision to make without remembering that it has made that
decision multiple times before. (Indeed, in the game theory
literature, these types of issues are often considered under
the heading of imperfect recall.) Similarly, the above exam-
ple about inspecting a trading agent in a simulated environ-
ment could involve using the same instantiation of the agent,
but first wiping its memory clean. Second, we can instantiate
the same AI agent multiple times, by copying its code and
running it in multiple places — and each instantiation may not
know where or when it is being run. A special case of this,
and one of particular interest to us, is that agent 1 is facing
some (possibly entirely different) agent 2 in a strategic sit-
uation, has access to agent 2’s source code, and decides to
simulate agent 2. Then, reasoning from the perspective of
agent 2, how can it be sure that it is not the simulated copy,
and how should this affect agent 2’s actions? We have al-
ready discussed the use of simulation by eGroundedFairBot
to achieve cooperation above, but we did so mostly from an
“external” perspective of choosing programs. Here, instead,
we take the “internal” perspective of an agent that is poten-
tially being simulated in such a scenario, because to fully
analyze and understand these scenarios, we need to be able
to reason from both these perspectives in a consistent man-
ner.

The paradigmatic example in the literature on self-
locating beliefs is the Sleeping Beauty problem (Elga 2000;
Titelbaum 2013). Rather than present the traditional Sleep-
ing Beauty case, we will discuss an Al-oriented version of

5Cf. the use of honeypots in computer security (Spitzner 2002)
and the Volkswagen emissions scandal.

it. Consider a car that is human-driven, but equipped with
Al that detects serious problems (e.g., driver asleep at the
wheel) and in such cases “wakes up” to take over control of
the vehicle. Moreover, the vehicle does not retain any data
about such events — perhaps intentionally, to avoid embar-
rassment or raised insurance rates. This makes it a game of
imperfect recall, as the Al will not remember waking up be-
fore. Suppose that there are only two types of drivers in the
world: half of them are good, and half of them are bad. With
good drivers, there will be one serious problem during their
ownership of the car; with bad drivers, two. Now imagine
that the AI has just been woken up, and wishes to assess
the odds that its driver is good (which may be relevant for
determining when to pass control back to the driver). What
should be the car’s subjective belief as a probability (its cre-
dence) that the driver is good? As it turns out, the answer
is not settled. Some people believe the credence should still
be 1/2; these people are called halfers. Others believe that
having just been woken up provides some evidence that the
driver is bad, and these people generally believe the answer
is 1/3; they are called thirders.

Similar cases can be given for copies and simulations
of agents. Consider a standalone Al system that half of all
households install on one device, and that the other house-
holds install on two devices; once installed, the Al assesses
the probability that it is alone in the household. Or, consider
a strategic setting with an agent that, with probability 1/2, is
not simulated by its opponent before it acts in the real world,
and with the remaining probability, is simulated once by its
opponent, to see what action it will take. When finding it-
self about to act, realizing it may just be being simulated by
the opponent, the agent must assess the probability that the
opponent never simulates it. (We will return to this scenario
later in this section.) It can be argued that all three of these
cases are equivalent to the Sleeping Beauty problem.

The Sleeping Beauty problem, and more broadly ques-
tions about self-locating beliefs, have received much atten-
tion in the philosophy literature due to their implications for
anumber of big questions. Might we ourselves be (in) a sim-
ulation? Specifically, if we believe that humans would even-
tually be able to, and choose to, simulate vast numbers of
human lives, should we not think we ourselves are likely
to be among the simulated? (This is called the “simulation
argument” (Bostrom 2003).) Another question: do we have
evidence that there will not be many trillions of humans in
the universe, since if there were, one would be unlikely to
find oneself among the first 100 billion or so to live? (This is
called the “Doomsday argument.”) These questions call for
an understanding of how a given perspective in the world,
such as one of a single human being at a specific point in
time, is sampled from all such perspectives. Discussing such
a sampling process may seem odd — one may hold that hu-
mans just exist across spacetime and that is that; nothing
out there is “sampling” their experiences. Yet, e.g., Hellie
(2013) has argued that such a neutral, “constellation” view
of the universe does not match the experience that we are
given; instead one finds oneself in an “embedded” (what we
have called “internal”) viewpoint and can reasonably ask,



“why this one?”¢

The question of how to assign self-locating beliefs has
practical relevance. After all, Al agents need to make deci-
sions in settings with uncertainty; and generally speaking, if
one makes decisions based on wrongly calculated probabil-
ities, those decisions are going to be worse. If these agents
face problems of self-locating belief, we will want to know
the correct answer to the Sleeping Beauty problem (and sim-
ilar problems). Indeed perhaps decision scenarios with im-
perfect recall give us a way of resolving the Sleeping Beauty
problem — surely not both 1/2 and 1/3 can yield correct de-
cisions, and so we can see which one of them leads to worse
decisions to rule that one out? (This requires adding a deci-
sion component to the Sleeping Beauty problem, for exam-
ple having the agent bet on the number of awakenings.)

It turns out that it is not that simple, and in fact this leads
us back to questions about decision theory. In particular, to
a first approximation,’ thirders will make good decisions if
they use causal decision theory, and halfers will make good
decisions if they use evidential decision theory (Hitchcock
2004; Draper and Pust 2008; Briggs 2010; Oesterheld and
Conitzer 2022). The reason that the distinction between the
decision theories is relevant here is that one’s decision upon
waking up is very good evidence for what one will do, or
did do, on the other day in the case that there are two awak-
enings; after all, one is in the exact same epistemic state on
both days.

We now return to Al agents that can reason about the
probability that they are simulations, tying together a num-
ber of the themes so far. Consider the following game,
known as the trust game or investment game in the litera-
ture (Berg, Dickhaut, and McCabe 1995): in stage 1, player
1 can choose to give some amount of money (say, $10) to
player 2, and if so this money is tripled before player 2 re-
ceives it (so player 2 receives $30); then, in stage 2, player
2 can give any amount of money (say, $15) back to player
1 (which this time is not tripled). A standard game-theoretic
analysis of this game is that player 2 has no incentive to give
back any money in the second stage, and player 1 can antici-
pate that and therefore has no incentive to give any money in
the first stage. As in the Prisoner’s Dilemma, this outcome
is Pareto-dominated by other outcomes (such as the exam-
ple outcome in parentheses above).® However, now imagine

8For more discussions on these types of questions, see, for ex-
ample, Valberg (2007); Hare (2007, 2009, 2010); Merlo (2016,
2021); Conitzer (2019a, 2020).

"There are multiple variants of these decision theories that one
can use, and it is important to use the right one (Conitzer 2015;
Oesterheld and Conitzer 2022).

8The trust game is popular in the field of behavioral game the-
ory (Camerer 2003), which studies how humans play games. Hu-
man players will generally cooperate (give in both roles) in exper-
iments (Berg, Dickhaut, and McCabe 1995; Briilhart and Usunier
2012). Why do they cooperate? Perhaps they are worried about run-
ning into their partner again, or otherwise being judged on their be-
havior. However, they may also feel that not giving money back is
simply wrong. This would be a normative reason to cooperate, and
a corresponding game-theoretic solution concept is given by Letch-
ford, Conitzer, and Jain (2008).

that the players are Al agents that can simulate each other.
Suppose player 2 finds itself in the situation where it has just
received $30. Player 2 might then reason as follows: Perhaps
I am just a simulation, run by player 1 to determine whether
I would in fact pay back anything. If that is so, I should pay
back a good amount of money, so that player 1 will give to
me in the real world, which is what I care about. Of course, I
might also simply be player 2 in the real world, in which case
I would rather pay back nothing. To trade off between these
scenarios, player 2 needs to reason about the probability of
being a simulation, which, tying back to self-locating be-
liefs, perhaps depends on the number of times that player 1
simulates player 2 — which in turn requires a game-theoretic
analysis to determine. How should we model these interac-
tions, what are their equilibria like, and how should we com-
pute these?

Equilibrium Selection

Equilibrium selection remains an important and understud-
ied topic, and one that cuts across all the preceding topics
insofar as the techniques discussed there allow for multiple
equilibria and do not make it clear which one is to be chosen.
Most of the work in the Al literature so far focuses on be-
ing able to compute or learn an equilibrium, rather than, say,
an optimal one.’ There are various reasons for this. First,
there are popular benchmarks, particularly two-player zero-
sum games, in which any equilibrium strategy is as good as
any other per the minimax theorem (von Neumann 1928).
Second, computing just any equilibrium is of course eas-
ier than computing an optimal one. In the context of com-
puting Nash equilibria of 2-player normal-form games, this
is made precise by the fact that computing one Nash equi-
librium is only PPAD-complete (Daskalakis, Goldberg, and
Papadimitriou 2009; Chen, Deng, and Teng 2009) whereas
computing an optimal Nash equilibrium is NP-hard (Gilboa
and Zemel 1989; Conitzer and Sandholm 2008).

Perhaps more importantly, when multiple players each
use certain learning algorithms, they are often guaranteed to
converge to an equilibrium, but not an optimal one. In fact,
experiments have shown that both in repeated games and
in program games, the simpler Defect—Defect equilibrium is
learned when using standard learning algorithms (e.g., Sand-
holm and Crites 1996; Foerster et al. 2018; Hutter 2020;
Oesterheld et al. 2022). A recent line of work in multi-agent
reinforcement learning aims to develop algorithms that learn
better equilibria (Foerster et al. 2018; Letcher et al. 2019).

In settings where we have no control over the agents and
we are just trying to predict what might happen — which
is often the viewpoint of economic theory — one generally
would like to have a full picture of all equilibria, as opposed
to just one or even just an optimal one. From the perspective
of building advanced Al systems, however, we also need to
be able to coordinate the players on a single (good) equilib-
rium to achieve good outcomes. Otherwise, even in a domain
that allows good equilibria (e.g., repeated games), we run the
risk that each player chooses to play according to an equilib-

9There are, of course, exceptions, e.g., Sandholm, Gilpin, and
Conitzer (2005), Zhang et al. (2022), and citations therein.



rium that is, for example, just a bit better for that player than
for the others, but the resulting profile of play may be neither
an equilibrium nor a particularly good outcome. Hence, we
need to address the equilibrium selection problem head-on
rather than sidestep it.

Foundations of Cooperative Al:
A Call to Action

We hope to have made a convincing case for a research
agenda on foundations of cooperative Al. This agenda is
important due the risks and opportunities associated with in-
creasing interactions among Al systems. While various ex-
isting individual research contributions are highly relevant
to this agenda — including ones that we have not discussed
here!? — the agenda as a whole has received little study so far.
This provides an opportunity to build on, bring together, and
unify these various threads, as well as new ones. Finally, we
hope to have made a good case that this direction is tractable.
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