Auctions \& Combinatorial Auctions

Vincent Conitzer
conitzer@cs.cmu.edu

A few different 1-item auction mechanisms

; English auction:

- Each bid must be higher than previous bid
- Last bidder wins, pays last bid

Japanese auction:

- Price rises, bidders drop out when price is too high
- Last bidder wins at price of last dropout

Dutch auction:

- Price drops until someone takes the item at that price
- Sealed-bid auctions (direct-revelation mechanisms):
- Each bidder submits a bid in an envelope
- Auctioneer opens the envelopes, highest bid wins

First-price sealed-bid auction: winner pays own bid Second-price sealed bid (or Vickrey) auction: winner pays secondhighest bid

Complementarity and substitutability

- How valuable one item is to a bidder may depend on whether the bidder possesses another item
- Items a and b are complementary if $v(\{a, b\})>$ $v(\{a\})+v(\{b\})$
- E.g.

- Items a and b are substitutes if $v(\{a, b\})<$ $v(\{a\})+v(\{b\})$
- E.g.

Inefficiency of sequential auctions

- Suppose your valuation function is $v(\square)=$ $\$ 200, \mathrm{v}$ (10) $=\$ 100, \mathrm{v}(\mathrm{l})=\$ 500$
- Now suppose that there are two (say, Vickrey) auctions, the first one for and the second one for
-What should you bid in the first auction (for)?
- If you bid $\$ 200$, you may lose to a bidder who bids $\$ 250$, only to find out that you could have won for \$200
- If you bid anything higher, you may pay more than \$200, only to find out that sells for \$1000
- Sequential (and parallel) auctions are inefficient

Combinatorial auctions

 simultaneously for sale: = , \square
used in truckload transportation, industrial procurement, radio spectrum allocation, ...

The winner determination problem (WDP)

- Choose a subset A (the accepted bids) of the bids B,
- to maximize $\Sigma_{\mathrm{b} \text { in } \mathrm{A}} \mathrm{V}_{\mathrm{b}}$,
- under the constraint that every item occurs at most once in A
- This is assuming free disposal, i.e., not everything needs to be allocated

WDP example

- Items A, B, C, D, E
- Bids:
- (\{A, C, D\}, 7)
- (\{B, E\}, 7)
- (\{C\}, 3)
- (\{A, B, C, E\}, 9)
- (\{D\}, 4)
- (\{A, B, C\}, 5)
- (\{B, D\}, 5)
- What's an optimal solution?
- How can we prove it is optimal?

Price-based argument for optimality

- Items A, B, C, D, E
- Bids:
- (\{A, C, D\}, 7)
- (\{B, E\}, 7)
- (\{C\}, 3)
- (\{A, B, C, E\}, 9)
- (\{D\}, 4)
- (\{A, B, C\}, 5)
- (\{B, D\}, 5)
- Suppose we create the following "prices" for the items:
- $p(A)=0, p(B)=7$, $p(C)=3, p(D)=4$, $p(E)=0$
- Every bid bids at most the sum of the prices of its items, so we can't expect to get more than 14.

Price-based argument does not

always give matching upper bound

- Clearly can get at most 2
- Items A, B, C - If we want to set prices that
- Bids:
- (\{A, B\}, 2)
- (\{B, C\}, 2)
- (\{A, C\}, 2)
sum to 2, there must exist two items whose prices sum to < 2
- But then there is a bid on those two items of value 2
- (Can set prices that sum to 3 , so that's an upper bound)

Should not be surprising, since it's an NPhard problem and we don't expect short proofs for negative answers to NP-hard problems (we don't expect NP = coNP)

An integer program formulation

- x_{b} equals 1 if bid b is accepted, 0 if it is not
- maximize $\Sigma_{b} \mathrm{~V}_{\mathrm{b}} \mathrm{x}_{\mathrm{b}}$
- subject to
- for each item $j, \Sigma_{b: j \text { in } b} x_{b} \leq 1$
- If each x_{b} can take any value in [0, 1], we say that bids can be partially accepted
- In this case, this is a linear program that can be solved in polynomial time
- This requires that
- each item can be divided into fractions
- if a bidder gets a fraction f of each of the items in his bundle, then this is worth the same fraction f of his value v_{b} for the bundle

Price-based argument does always

 work for partially acceptable bids- Items A, B, C
- Bids:
- (\{A, B\}, 2)
- (\{B, C\}, 2)
- (\{A, C\}, 2)
- Now can get 3, by accepting half of each bid
- Put a price of 1 on each item

General proof that with partially acceptable bids, prices always exist to give a matching upper bound is based on linear programming duality

Weighted independent set

- Choose subset of the vertices with maximum total weight,
- Constraint: no two vertices can have an edge between them
- NP-hard (generalizes regular independent set)

The winner determination problem as a weighted independent set problem

- Each bid is a vertex
- Draw an edge between two vertices if they share an item
bid 2

- Optimal allocation = maximum weight independent set
- Can model any weighted independent set instance as a CA winner determination problem (1 item per edge (or clique))
- Weighted independent set is NP-hard, even to solve approximately [Håstad 96] - hence, so is WDP
- [Sandholm 02] noted that this inapproximability applies to the WDP

Dynamic programming approach

 to WDP [Rothkopf et al. 98]- For every subset S of I, compute $w(S)=$ the maximum total value that can be obtained when allocating only items in S
- Then, w(S) $=\max \left\{\max _{i} v_{i}(S), \max _{S^{\prime} ; S^{\prime}}\right.$ is a subset of s , and there exists a bid on $\left.\mathrm{S}^{\prime} \mathrm{w}\left(\mathrm{S}^{\prime}\right)+\mathrm{w}\left(\mathrm{S} \backslash \mathrm{S}^{\prime}\right)\right\}$
- Requires exponential time

Bids on connected sets of items in a tree

- Suppose items are organized in a tree

- Suppose each bid is on a connected set of items
- E.g. $\{A, B, C, G\}$, but not $\{A, B, G\}$
- Then the WDP can be solved in polynomial time (using dynamic programming) [Sandholm \& Suri 03]
- Tree does not need to be given: can be constructed from the bids in polynomial time if it exists [Conitzer, Derryberry, Sandholm 04]
- More generally, WDP can also be solved in polynomial time for graphs of bounded treewidth [Conitzer, Derryberry, Sandholm 04]
- Even further generalization given by [Gottlob, Greco 07]

Maximum weighted matching (not necessarily on bipartite graphs)

- Choose subset of the edges with maximum total weight,
- Constraint: no two edges can share a vertex
- Still solvable in polynomial time

Bids with few items [Rothkopf et al. 98]

- If each bid is on a bundle of at most two items,
- then the winner determination problem can be solved in polynomial time as a maximum weighted matching problem
- 3 -item example:

- If each bid is on a bundle of three items, then the winner determination problem is NP-hard again

Variants [Sandholm et al. 2002]: combinatorial reverse auction

- In a combinatorial reverse auction (CRA), the auctioneer seeks to buy a set of items, and bidders have values for the different bundles that they may sell the auctioneer
- minimize $\Sigma_{b} \mathrm{~V}_{\mathrm{b}} \mathrm{x}_{\mathrm{b}}$
- subject to
- for each item $\mathrm{j}, \Sigma_{\mathrm{b}: \mathrm{j} \text { in } \mathrm{b}} \mathrm{x}_{\mathrm{b}} \geq 1$

WDP example (as CRA)

- Items A, B, C, D, E
- Bids:
- (\{A, C, D\}, 7)
- (\{B, E\}, 7)
- (\{C\}, 3)
- (\{A, B, C, E\}, 9)
- (\{D\}, 4)
- (\{A, B, C\}, 5)
- (\{B, D\}, 5)

Variants:

multi-unit CAs/CRAs

Multi-unit variants of CAs and CRAs: multiple units of the same item are for sale/to be bought, bidders can bid for multiple units Let $q_{b j}$ be number of units of item j in bid b, q_{j} total number of units of j available/demanded maximize $\Sigma_{b} \mathrm{v}_{\mathrm{b}} \mathrm{x}_{\mathrm{b}}$
subject to

- for each item $j, \Sigma_{b} q_{b j} x_{b} \leq q_{j}$
- minimize $\Sigma_{b} v_{b} x_{b}$
- subject to
- for each item $j, \Sigma_{b} q_{b j} x_{b} \geq q_{j}$

Multi-unit WDP example (as CA/CRA)

- Items: 3A, 2B, 4C, 1D, 3E
- Bids:
- ($\{1 \mathrm{~A}, 1 \mathrm{C}, 1 \mathrm{D}\}, 7$)
- (\{2B, 1E\}, 7)
- (\{2C\}, 3)
- (\{2A, 1B, 2C, 2E\}, 9)
- (\{2D\}, 4)
- (\{3A, 1B, 2C\}, 5)
- (\{2B, 2D\}, 5)

Variants: (multi-unit) combinatorial exchanges

Combinatorial exchange (CE): bidders can simultaneously be buyers and sellers

- Example bid: "If I receive 3 units of A and -5 units of B (i.e., I have to give up 5 units of B), that is worth $\$ 100$ to me."
- maximize $\Sigma_{b} \mathrm{v}_{\mathrm{b}} \mathrm{x}_{\mathrm{b}}$
- subject to
- for each item $\mathrm{j}, \mathrm{\Sigma}_{\mathrm{b}} \mathrm{a}_{\mathrm{b}, \mathrm{j}} \mathrm{x}_{\mathrm{b}} \leq 0$

CE WDP example

- Bids:
- (\{-1A, -1C, -1D\}, -7)
- (\{2B, 1E\}, 7)
- $(\{2 \mathrm{C}\}, 3)$
- (\{-2A, 1B, 2C, -2E\}, 9)
- (\{-2D\}, -4)
- (\{3A, -1B, -2C\}, 5)
- (\{-2B, 2D\}, 0)

Variants: no free disposal

- Change all inequalities to equalities

(back to 1-unit CAs) Expressing valuation

 functions using bundle bids- A bidder is single-minded if she only wants to win one particular bundle
- Usually not the case
- But: one bidder may submit multiple bundle bids
- Consider again valuation function $\mathrm{v}($] $)=$ $\$ 200, \mathrm{v}$ (ID) $=\$ 100, \mathrm{v}($] $)=\$ 500$
- What bundle bids should one place?
- What about: $\mathrm{v}(\square)=\$ 300, \mathrm{v}(\square)=\$ 200$, $\mathrm{v}($ — $)=\$ 400$?

Alternative approach:

 report entire valuation function- I.e., every bidder i reports $v_{i}(S)$ for every subset S of I (the items)
- Winner determination problem:
- Allocate a subset S_{i} of I to each bidder i to maximize $\Sigma_{i} v_{i}\left(S_{i}\right)$ (under the constraint that for $\mathrm{i} \neq \mathrm{j}, \mathrm{S}_{\mathrm{i}} \cap \mathrm{S}_{\mathrm{j}}=\varnothing$)
- This is assuming free disposal, i.e., not everything needs to be allocated

Exponentially many bundles

- In general, in a combinatorial auction with set of items I (III=m) for sale, a bidder could have a different valuation for every subset S of I
- Implicit assumption: no externalities (bidder does not care what the other bidders win)
- Must a bidder communicate 2^{m} values?
- Impractical
- Also difficult for the bidder to evaluate every bundle
- Could require $v_{i}(\varnothing)=0$
- Does not help much
- Could require: if S is a superset of $S^{\prime}, v(S) \geq$ v(S') (free disposal)
- Does not help in terms of number of values

Bidding languages

Bidding language $=$ a language for expressing valuation functions

- A good bidding language allows bidders to concisely express natural valuation functions
- Example: the OR bidding language [Rothkopf et al. 98, DeMartini et al. 99]
- Bundle-value pairs are ORed together, auctioneer may accept any number of these pairs (assuming no overlap in items)
- E.g. (\{a\}, 3) OR (\{b, c\}, 4) OR (\{c, d\}, 4) implies
- A value of 3 for $\{$ \}
- A value of 4 for $\{b, c, d\}$
- A value of 7 for $\{a, b, c\}$
- Can we express the valuation function $v(\{a, b\})=v(\{a\})=v(\{b\})$ $=1$ using the OR bidding language?
- OR language is good for expressing complementarity, bad for expressing substitutability
- If we use XOR instead of OR, that means that only one of the bundle-value pairs can be accepted
- Can express any valuation function (simply XOR together all bundles)
- E.g. (\{a\}, 3) XOR (\{b, c\}, 4) XOR (\{c, d\}, 4) implies
- A value of 3 for $\{a\}$
- A value of 4 for $\{b, c, d\}$
- A value of 4 for $\{a, b, c\}$
- Sometimes not very concise
- E.g. suppose that for any $S, v(S)=\Sigma_{s \text { in } s} v(\{s\})$
- How can this be expressed in the OR language?
- What about the XOR language?
- Can also combine ORs and XORs to get benefits of both [Nisan 00, Sandholm 02]
- E.g. ((\{a\}, 3) XOR (\{b, c\}, 4)) OR (\{c, d\}, 4) implies
- A value of 4 for $\{a, b, c\}$
- A value of 4 for $\{b, c, d\}$
- A value of 7 for $\{a, c, d\}$

WDP and bidding languages

- Single-minded bidders bid on only one bundle
- Valuation is v for any subset including that bundle, 0 otherwise
- If we can solve the WDP for single-minded bidders, we can also solve it for the OR language
- Simply pretend that each bundle-value pair comes from a different bidder
- We can even use the same algorithm when XORs are added, using the following trick:
- For bundle-value pairs that are XORed together, add a dummy item to them [Fujishima et al 99, Nisan 00]
- E.g. (\{a\}, 3) XOR (\{b, c\}, 4) becomes (\{a, dummy $\left.\left.{ }_{1}\right\}, 3\right) \mathrm{OR}$ (\{b, c, dummy $\}$, 4)
- So, we can focus on single-minded bids

