Kidney exchanges

(largely follows Abraham, Blum, Sandholm 2007 paper)

Vincent Conitzer

Prescription Al

THE BOTPERATING TABLE

- (1) A the US

By Corinne Purtill • September 10, 2018

\square

曾

Kidney transplants

- Kidneys filter waste from blood
- Kidney failure results in death in months
- Dialysis: regularly get blood filtered in hospital using external machine
- Low quality of life
- Preferred option: kidney transplant
- Cadaver kidneys
- Donation from live person (better)
- Must be compatible
- Shortage of kidneys...

An imaginary kidney exchange with money

Selling kidneys is illegal!

- Large international black market
- Desperate people on both ends...
-What can we do legally?

Kidney exchange

Kidney exchange (3-cycle)

Another example

More complex example

Solving kidney exchange as maximum weighted bipartite matching

Which solution is better?

Long cycles are impractical

- All patients in a cycle must be operated on simultaneously
- Otherwise donor can wait for friend to receive kidney, then back out
- Contracts to donate an organ not binding
- If last-minute test reveals incompatibility, whole thing falls apart
- Require each cycle has length at most k

Different representation

edge from i to $\mathrm{j}=$ patient i wants donor j's kidney

Different representation

edge from i to $\mathrm{j}=$ patient i wants donor j's kidney

Market clearing problem

- Try to cover as many vertices as possible with (vertex-)disjoint cycles of length at most k

$\mathrm{k}=2$

$\mathrm{k}=3$

$\mathrm{k}=2,3$

Market clearing problem

- Try to cover as many vertices as possible with (vertex-)disjoint cycles of length at most k

Special case: k=2

- If edges go in both directions, replace by undirected edge
- Remove other edges

- Maximum matching problem!

Complexity

- $\mathrm{k}=2$: in P by maximum matching
- $k=$ number of vertices (no constraint): in P by maximum weighted bipartite matching
- $\mathrm{k}=3,4,5, \ldots$: NP-hard!

An integer programming formulation

- For each edge from i to j, make a binary variable $x_{i j}$
- 1 if i gets j's kidney, 0 otherwise
- maximize $\Sigma_{\mathrm{ij}} \mathrm{x}_{\mathrm{ij}}$
- subject to:
- for every $\mathrm{i}: \Sigma_{\mathrm{j}} \mathrm{x}_{\mathrm{ij}}=\Sigma_{\mathrm{j}} \mathrm{x}_{\mathrm{ji}}$
- (number of kidneys received by $\mathrm{i}=$ number of kidneys given by i)
- for every $\mathrm{j}: \Sigma_{\mathrm{i}} \mathrm{x}_{\mathrm{ij}} \leq 1$
- (j gives at most 1 kidney)
- for every path $i_{1} i_{2} \ldots i_{k} i_{k+1}$ with $i_{1} \neq i_{k+1}: \sum_{1 \leq j \leq k} x_{i_{j i j}+1} \leq k-1$ - (no path of length k that doesn't end up where it started, hence no cycles greater than k)

Another integer programming formulation (turns out better)

- For each cycle c of length at most k, make a binary variable x_{c}
- 1 if all edges on this cycle are used, 0 otherwise
- maximize $\Sigma_{\mathrm{c}}|\mathrm{c}| \mathrm{x}_{\mathrm{c}}$
- subject to:
- for every vertex i: $\Sigma_{\text {c: }}$ in $\mathrm{x}_{\mathrm{c}} \leq 1$
- (every vertex in at most one used cycle)

Program size

- Even for small k, number of paths/cycles is too large in reasonably large exchanges
- Solution: generate constraints/variables on the fly during solving
- Constraint/column generation

Another integer program (not in paper)

- Say an "event" is a set of simultaneous operations
- Denote events by $t=1, \ldots, \mathrm{~T}$ (how big should T be?)
- For each edge from i to j, for each t, make a binary variable $\mathrm{x}_{\mathrm{ijt}}$
- 1 if i gets j's kidney in event t , 0 otherwise
- maximize $\Sigma_{\mathrm{i}, \mathrm{j}, \mathrm{t}} \mathrm{x}_{\mathrm{ijt}}$
- subject to:
- for every i, t : $\Sigma_{\mathrm{j}} \mathrm{x}_{\mathrm{ijt}}=\Sigma_{\mathrm{j}} \mathrm{x}_{\mathrm{jit}}$
- (number of kidneys received by i in event $\mathrm{t}=$ number of kidneys given by i in event t)
- for every $\mathrm{j}: \Sigma_{\mathrm{i}, \mathrm{t}} \mathrm{x}_{\mathrm{ijt}} \leq 1$
- (j gives at most 1 kidney overall)
- for every t: $\Sigma_{\mathrm{i}, \mathrm{j}} \mathrm{x}_{\mathrm{ijt}} \leq \mathrm{k}$
- (at most k operations per event)

Other applications

- Barter exchanges: agents want to swap items without paying money
- Peerflix (DVDs)
- Read It Swap It (books)
- Intervac (holiday houses)
- National odd shoe exchange
- People with different foot sizes
- Amputees

Modeling

- What assumptions have we implicitly made in modeling a kidney exchange?
- What problems might come up that we haven't thought about?
- What additional aspects could one model to get even better results?

