Linear programming, integer linear programming, mixed integer linear programming

conitzer@cs.cmu.edu

Example linear program

- We make reproductions of two paintings
maximize $3 x+2 y$

- Painting 1 sells for $\$ 30$, painting 2

$$
x+y \leq 5
$$ sells for $\$ 20$

- Painting 1 requires 4 units of blue, 1 green, 1 red

$$
\begin{gathered}
\text { subject to } \\
4 x+2 y \leq 16 \\
x+2 y \leq 8
\end{gathered}
$$

$$
x \geq 0
$$

$$
y \geq 0
$$

- Painting 2 requires 2 blue, 2 green, 1 red
- We have 16 units blue, 8 green, 5 red

Solving the linear program graphically

maximize $3 x+2 y$
subject to

$$
\begin{gathered}
4 x+2 y \leq 16 \\
x+2 y \leq 8 \\
x+y \leq 5 \\
x \geq 0 \\
y \geq 0
\end{gathered}
$$

Proving optimality

maximize $3 x+2 y$
subject to

$$
4 x+2 y \leq 16
$$

$$
x+2 y \leq 8
$$

$$
x+y \leq 5
$$

$$
x \geq 0
$$

$$
y \geq 0
$$

Recall: optimal solution:

$$
x=3, y=2
$$

Solution value $=9+4=13$

How do we prove this is optimal (without the picture)?

Proving optimality...

maximize $3 x+2 y$
subject to

$$
\begin{gathered}
4 x+2 y \leq 16 \\
x+2 y \leq 8 \\
x+y \leq 5 \\
x \geq 0 \\
y \geq 0
\end{gathered}
$$

We can rewrite the blue constraint as

$$
2 x+y \leq 8
$$

If we add the red constraint
$x+y \leq 5$
we get

$$
3 x+2 y \leq 13
$$

Matching upper bound!
(Really, we added . 5 times the blue constraint to 1 times the red constraint)

Linear combinations of constraints

maximize $3 x+2 y$
subject to

$$
\begin{gathered}
4 x+2 y \leq 16 \\
x+2 y \leq 8 \\
x+y \leq 5 \\
x \geq 0 \\
y \geq 0
\end{gathered}
$$

$b(4 x+2 y \leq 16)+$

$$
g(x+2 y \leq 8)+
$$

$$
r(x+y \leq 5)=
$$

$(4 b+g+r) x+$
$(2 b+2 g+r) y \leq$
$16 b+8 g+5 r$
$4 b+g+r$ must be at least 3
$2 b+2 g+r$ must
be at least 2
Given this, minimize 16b +

$$
8 g+5 r
$$

Using LP for getting the best upper bound on an LP

maximize $3 x+2 y$
subject to
$4 x+2 y \leq 16$
$x+2 y \leq 8$
$x+y \leq 5$
$x \geq 0$
$y \geq 0$
minimize $16 b+8 g+5 r$ subject to

$$
\begin{gathered}
4 b+g+r \geq 3 \\
2 b+2 g+r \geq 2 \\
b \geq 0 \\
g \geq 0 \\
r \geq 0
\end{gathered}
$$

the dual of the original program

- Duality theorem: any linear program has the same optimal value as its dual!

Modified LP

maximize $3 x+2 y$
subject to

$$
\begin{gathered}
4 x+2 y \leq 15 \\
x+2 y \leq 8 \\
x+y \leq 5 \\
x \geq 0 \\
y \geq 0
\end{gathered}
$$

Optimal solution: $x=2.5$,

$$
y=2.5
$$

Solution value $=7.5+5=$ 12.5

Half paintings?

Integer (linear) program

maximize $3 x+2 y$
subject to
$4 x+2 y \leq 15$
$x+2 y \leq 8$
$x+y \leq 5$
$x \geq 0$, integer
$y \geq 0$, integer

Mixed integer (linear) program

maximize $3 x+2 y$
subject to
$4 x+2 y \leq 15$
$x+2 y \leq 8$
$x+y \leq 5$
$x \geq 0$
$y \geq 0$, integer

Solving linear/integer programs

- Linear programs can be solved efficiently
- Simplex, ellipsoid, interior point methods...
- (Mixed) integer programs are NP-hard to solve
- Quite easy to model many standard NP-complete problems as integer programs (try it!)
- Search type algorithms such as branch and bound
- Standard packages for solving these
- GNU Linear Programming Kit, CPLEX, Gurobi, ...
- LP relaxation of (M)IP: remove integrality constraints
- Gives upper bound on MIP (~admissible heuristic)

Exercise in modeling: knapsack-type problem

- We arrive in a room full of precious objects
- Can carry only 30 kg out of the room
- Can carry only 20 liters out of the room
- Want to maximize our total value
- Unit of object A: 16kg, 3 liters, sells for $\$ 11$
- There are 3 units available
- Unit of object B: 4kg, 4 liters, sells for $\$ 4$ - There are 4 units available
- Unit of object C: 6kg, 3 liters, sells for $\$ 9$ - Only 1 unit available
- What should we take?

The general version of this knapsack IP

maximize $\Sigma_{j} p_{j} x_{j}$
subject to
$\Sigma_{j} w_{j} x_{j} \leq W$
$\Sigma_{j} v_{j} x_{j} \leq V$
(for all j) $x_{j} \leq a_{j}$
(for all j) $x_{j} \geq 0, x_{j}$ integer

Exercise in modeling: cell phones (set cover)

- We want to have a working phone in every continent (besides Antarctica)
- ... but we want to have as few phones as possible
- Phone A works in NA, SA, Af
- Phone B works in E, Af, As
- Phone C works in NA, Au, E
- Phone D works in SA, As, E
- Phone E works in Af, As, Au
- Phone F works in NA, E

Exercise in modeling: hot-dog stands

- We have two hot-dog stands to be placed in somewhere along the beach
- We know where the people that like hot dogs are, how far they are willing to walk
- Where do we put our stands to maximize \#hot dogs sold? (price is fixed)

