
Computational Microeconomics - Practice Final
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Problem 1: True or False (24 points).
Label each of the following statements as true or false. You are not required

to give any explanation.

1. The Japanese auction and the second-price sealed-bid auction are strate-
gically equivalent even when valuations are interdependent.

2. In the combinatorial auction winner determination problem, if we allow
bids to be partially accepted, this makes winner determination easier com-
putationally.

3. Any valuation function can be expressed in the OR language.

4. The Borda rule (where an alternative gets one point for being ranked
second-to-last, two points for being ranked third-to-last, ...) is strategy-
proof, i.e., it cannot be manipulated by misrepresenting one’s preferences.

5. Risk aversion is inconsistent with maximizing expected utility.

6. When playing a two-player zero-sum game, a maximin strategy is not
always a Nash equilibrium strategy.

7. We know how to compute a Nash equilibrium of a two-player zero-sum
game using linear programming.

8. We know how to compute a Nash equilibrium of a two-player general-sum
game using linear programming.

9. Committing to a pure strategy before the other player moves is never
disadvantageous.

10. In some games, people do not play an equilibrium right away, but over
time (repeated play) they get close to playing an equilibrium.

11. In some games, people play very differently from what a simple game-
theoretic analysis would suggest.

12. If you have a non-direct revelation mechanism and know its solution (e.g.,
equilibrium), you can always turn this into an incentive compatible direct-
revelation mechanism (where agents report their valuations/types directly
and are incentivized to report truthfully).
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Problem 2: Planning to go to one or more restaurants (20 points).
We have some set of people who want to go to some set of restaurants. For

each person i and each restaurant r, i has a value vir for going to that restaurant.
Also, for every two people i and j, person i has a value of wij for going to the
same restaurant as j (note wij is not necessarily equal to wji). An agent i’s
valuation is the sum of that agent’s applicable vir and wij (you can get only
one of your vir but potentially multiple of your wij). We wish to determine
who should go to which restaurants, so as to maximize the sum of the agents’
valuations. Every agent must go to a single restaurant. Note that not everyone
needs to go to the same restaurant (though they can).

For example, consider three agents Alice, Bob, and Carol, who are consider-
ing whether to go to a French, Indian, or Mexican restaurant. Alice likes French
(vAF = 10) and to be with Bob (wAB = 8). Bob likes Indian (vBI = 12) and
to be with Carol (wBC = 7). Carol likes Mexican (vCM = 11) and to be with
Alice (wCA = 9). Nobody likes anything or anyone else, i.e., all the other vir
and wij are zero.

a. What is the optimal solution for this example?

b. Compute the Clarke mechanism (GVA) payments of all the agents in
the example. (Here, some payments may be negative because some agents may
contribute to the welfare of others by being present.)
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c. Give an integer program for computing the optimal solution in general (for
arbitrary vir and wij ; your integer program doesn’t have to compute the Clarke
payments, just the optimal solution). You can write it either mathematically
or in the modeling language (but if write it mathematically, be very precise in
your use of ∀ and be clear about which variables you are summing over—the
modeling language of course forces you to do so). You don’t need to enter the
data from the above example.
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Problem 3: Modified Rock-Paper-Scissors (20 points).
Consider the following modified version of Rock-Paper-Scissors, where losing

with Paper to Scissors is considered doubly humiliating:

Rock Paper Scissors
Rock 0,0 -1,1 1,-1
Paper 1,-1 0,0 -2,2

Scissors -1,1 2,-2 0,0

a. Wright argues that in every equilibrium of this game, every pure strategy
must receive positive probability from both players. Is Wright right or wrong?
Explain why.

b. Based on your answer in a, compute a Nash equilibrium of this game. Is
it the unique equilibrium? Why (not)?
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Problem 4: A game with a hidden coin flip (20 points).
In this problem, you will solve a simple game (reminiscent of “Liar’s Dice”

if you happen to know it). Player 1 flips a coin and sees the result; player 2
does not see the result. Heads is a “winning” coin flip, Tails is a “losing” coin
flip. Player 1 makes a claim about the coin flip to player 2, either claiming to
have flipped Heads, or claiming to have flipped Tails. Player 2 can choose to
Dispute the claim, or to Accept it.

If player 2 chooses to Dispute, player 1 must show the coin. (Of course,
player 1 cannot change the result of the coin flip.) If player 1 lied, player 2
wins; if player 1 told the truth, player 1 wins. If player 2 chooses to Accept,
then whatever player 1 claimed stands (regardless of what she actually flipped),
and player 2 must flip the coin to compete with that claim.

For example, suppose player 1 flips Tails, but then claims to have flipped
Heads. If player 2 Disputes, player 2 wins, because player 1 lied. If player 2
Accepts, then player 1’s claim of Heads stands (and the fact that she actually
flipped Tails becomes irrelevant), and player 2 must flip the coin to compete
with Heads. If player 2 flips Tails, then he loses, because Tails is worse than
Heads. If player 2 flips Heads, we have a tie.

Suppose the utility for winning is 1, the utility for losing is -1, and the utility
for a tie is 0 (it’s a zero-sum game). Give the extensive form of the game, convert
it to normal (matrix) form (explaining what the strategies mean and calculating
the expected utilities), and solve for the equilibrium of this game. (Hint: the
normal form should be 4× 4 and the whole process should be quite similar to a
game you have seen before.)
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Problem 5: Poor generalizations of the Vickrey auction (20 points).
What we call the Generalized Vickrey Auction is a nice way to generalize the

Vickrey auction to combinatorial auctions. But, there are many other ways to
generalize the Vickrey auction to combinatorial auctions. We will consider some
not-so-clever ways to generalize it here. We will call these Poorly Generalized
Vickrey Auctions (PGVAs). All of these allocate the items efficiently, but they
determine the payments differently. For each of them, you must show one or
more bad properties of this auction, by giving some examples. Your examples
should consist of specific bids with specific numbers (they can be quite simple).
You can assume all bidders are single-minded for this question.

PGVA #1: A bidder who wins bundle S pays the value of the highest other
bid on a subbundle S′ ⊆ S. For example, if there are only two bids, ({A}, 5)
and ({A,B}, 10), the second bidder wins and pays 5 because {A} ⊆ {A,B} (the
first bidder bids on a subset of what the second bidder bids on). Show that this
auction is not strategy-proof, that is, sometimes a bidder is better off bidding
something other than her true valuation.

7



PGVA #2: A bidder who wins bundle S pays the value of the highest other
bid on a superbundle S′ ⊇ S. For example, if there are only two bids, ({A}, 5)
and ({A,B}, 10), the second bidder wins and pays 0 because {A} 6⊇ {A,B}
(the first bidder does not bid on a superset of what the second bidder bids
on). Show that this auction does not satisfy voluntary participation, that is,
sometimes a bidder ends up with negative utility. Also show that this auction is
not strategy-proof, that is, sometimes a bidder is better off bidding something
other than her true valuation.

PGVA #3: A bidder who wins bundle S pays the value of the highest other
bid on an intersecting bundle S′ (where S′ ∩ S 6= ∅). For example, if there are
only two bids, ({A}, 5) and ({A,B}, 10), the second bidder wins and pays 5
because {A} ∩ {A,B} 6= ∅ (the first bidder bids on a bundle that overlaps with
what the second bidder bids on). Show that this auction does not satisfy vol-
untary participation, that is, sometimes a bidder ends up with negative utility.
Also show that this auction is not strategy-proof, that is, sometimes a bidder is
better off bidding something other than her true valuation.
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Problem 6: Expected revenue of a Vickrey auction with a reserve
price & optimizing the reserve price (20 points).

Recall that a Vickrey auction with a reserve price r works as follows. Let b1
and b2 be the highest and second-highest bids, respectively.

• If b1 ≥ b2 ≥ r, then the highest bidder wins and pays b2.

• If b1 ≥ r > b2, then the highest bidder wins and pays r.

• If r > b1, nobody wins.

A Vickrey auction with reserve price is still strategy-proof, so you can assume
bidders bid truthfully. Suppose all bidders have their valuation drawn (inde-
pendently) from the uniform distribution over [0, 1]. Calculate the expected
revenue as a function of r. Then, find the value of r that maximizes expected
revenue for the auctioneer.

Note: I will give you half credit for this question if you solve it with only
two bidders, and full credit if you solve it with n bidders.

Hint: As we did in class, consider the probability density function of the
revenue. Above r, this probability density function is exactly the same as if there
were no reserve price (the probability of getting any particular revenue above r
is the same as if there were no reserve price). Specifically, as we calculated in
class, the density function of revenue for the Vickrey auction is

f(x) = n(n− 1)(xn−2 − xn−1)

(resulting in an expected revenue of∫ 1

0

xf(x)dx =
n− 1

n + 1

for the no-reserve price case). So, the above-r component of the expected rev-
enue can be calculated similarly. In our setting, it is not possible to get a revenue
below r (other than 0). But, there is a significant probability of getting revenue
exactly r. What is it? You need to combine this with the first (above-r) part to
calculate the total expected revenue. Then you can optimize with respect to r.
(You have actually seen the answer before, but you still need to do the math...)
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