Securities \& Expressive Securities Markets

Vincent Conitzer

Call options

- A (European) call option C(S, k, t) gives you the right to buy stock S at (strike) price k on (expiry) date t
- American call option can be exercised early
- European one easier to analyze
- How much is a call option worth at time t (as a function of the price of the stock)?
value \uparrow
k

Put options

- A (European) put option $P(S, k, t)$ gives you the right to sell stock S at (strike) price k on (expiry) date t
- How much is a put option worth at time t (as a function of the price of the stock)?

Bonds

- A bond $B(k, t)$ pays off k at time t

Stocks

Selling a stock (short)

A portfolio

- One call option $C(S, k, t)+$ one bond $B(k, t)$

Another portfolio

- One put option $\mathrm{P}(\mathrm{S}, \mathrm{k}, \mathrm{t})+$ one stock S

Put-call parity

- $C(S, k, t)+B(k, t)$ will have the same value at time t as $P(S, k, t)+S$ (regardless of the value of S)
- Assume stocks pay no dividends
- Then, portfolio should have the same value at any time before t as well
- I.e., for any $\mathrm{t}^{\prime}<\mathrm{t}$, it should be that $\mathrm{p}_{\mathrm{t}^{\prime}}(\mathrm{C}(\mathrm{S}, \mathrm{k}, \mathrm{t}))+$ $\mathrm{p}_{\mathrm{t}^{\prime}}(\mathrm{B}(\mathrm{k}, \mathrm{t}))=\mathrm{p}_{\mathrm{t}^{\prime}}(\mathrm{P}(\mathrm{S}, \mathrm{k}, \mathrm{t}))+\mathrm{p}_{\mathrm{t}^{\prime}}(\mathrm{S})$
- Arbitrage argument: suppose (say) $\mathrm{p}_{\mathrm{t}^{\prime}}(\mathrm{C}(\mathrm{S}, \mathrm{k}, \mathrm{t}))+$ $\mathrm{p}_{\mathrm{t}^{\prime}}(\mathrm{B}(\mathrm{k}, \mathrm{t}))<\mathrm{p}_{\mathrm{t}^{\prime}}(\mathrm{P}(\mathrm{S}, \mathrm{k}, \mathrm{t}))+\mathrm{p}_{\mathrm{t}^{\prime}}(\mathrm{S})$
- Then: buy $C(S, k, t)+B(k, t)$, sell (short) $P(S, k, t)+S$
- Value of portfolio at time t is 0
- Guaranteed profit!

Another perspective: auctioneer

- Auctioneer receives buy and sell offers, has to choose which to accept
- E.g.: offers received: buy(S, \$10); sell(S, \$9)
- Auctioneer can accept both offers, profit of \$1
- E.g. (put-call parity):
- sell(C(S, k, t), \$3)
- sell(B(k, t), \$4)
- buy(P(S, k, t), \$5)
- buy(S, \$4)
- Can accept all offers at no risk!

"Butterfly" portfolio

- 1 call at strike price $\mathrm{k}-\mathrm{c}$
- -2 calls at strike k
- 1 call at strike $\mathrm{k}+\mathrm{c}$

Another portfolio

- Can we create this portfolio?

Yet another portfolio

- How about this one?

Two different stocks

- A portfolio with $\mathrm{C}\left(\mathrm{S}_{1}, \mathrm{k}, \mathrm{t}\right)$ and S_{2}

Another portfolio

- Can we create this portfolio?
(In effect, a call option on $S_{1}+S_{2}$)

A useful property

- Suppose your portfolio pays off $f\left(p_{t}\left(S_{1}\right), p_{t}\left(S_{2}\right)\right)=$ $\mathrm{f}_{1}\left(\mathrm{p}_{\mathrm{t}}\left(\mathrm{S}_{1}\right)\right)+\mathrm{f}_{2}\left(\mathrm{p}_{\mathrm{t}}\left(\mathrm{S}_{2}\right)\right)$ (additive decomposition over stocks)
- This is all we know how to do
- Then: $\mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)-\mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2}{ }^{\prime}\right)=\mathrm{f}\left(\mathrm{x}_{1}\right)+\mathrm{f}\left(\mathrm{x}_{2}\right)-\mathrm{f}\left(\mathrm{x}_{1}\right)-\mathrm{f}\left(\mathrm{x}_{2}{ }^{\prime}\right)=$ $f\left(x_{2}\right)-f\left(x_{2}{ }^{\prime}\right)=f\left(x_{1}{ }^{\prime}, x_{2}\right)-f\left(x_{1}{ }^{\prime}, x_{2}{ }^{\prime}\right)$

Portfolio revisited

- Can we create this portfolio? (In effect, a call option on $S_{1}+S_{2}$)

Securities conditioned on finite

 set of outcomes- E.g., Predictlt: security that pays off 1 if Trump is the Republican nominee in 2024
- Can we construct a portfolio that pays off 1 if Biden is the Democratic nominee AND Trump is the Republican nominee?

	Trump not nom.	Trump nom.
Biden not nom.	$\$ 0$	$\$ 0$
Biden nom.	$\$ 0$	$\$ 1$

Arrow-Debreu securities

- Suppose S is the set of all states that the world can be in tomorrow
- For each s in S , there is a corresponding ArrowDebreu security that pays off 1 if s happens, 0 otherwise
- E.g., s could be: Biden is nominee and Trump is nominee and S_{1} is at $\$ 4$ and S_{2} at $\$ 5$ and butterfly 432123 flaps its wings in Peru and...
- Not practical, but conceptually useful
- Can think about Arrow-Debreu securities within a domain (e.g., states only involve stock trading prices)
- Practical for small number of states

With Arrow-Debreu securities you can do anything...

- Suppose you want to receive $\$ 6$ in state $1, \$ 8$ in state 2, $\$ 25$ in state 3
- ... simply buy 6 AD securities for state 1,8 for state 2, 25 for state 3
- Linear algebra: Arrow-Debreu securities are a basis for the space of all possible securities

The auctioneer problem

- Tomorrow there must be one of
- Agent 1 offers $\$ 5$ for a security that pays off $\$ 10$ if Êt or
- Agent 2 offers $\$ 8$ for a security that pays off \$10 if
- Agent 3 offers $\$ 6$ for a security that pays off \$10 if
- Can we accept some of these at offers at no risk?

Reducing auctioneer problem to ~combinatorial exchange winner determination problem

- Let (x, y, z) denote payout under respectively
- Previous problem's bids:
- 5 for ($0,10,10$)
- 8 for $(10,0,10)$
- 6 for ($10,0,0$)
- Equivalently:
$-(-5,5,5)$
- $(2,-8,2)$
- (4, -6, -6)
- Sum of accepted bids should be $(\leq 0, \leq 0, \leq 0)$ to have no risk
- Sometimes possible to partially accept bids

A bigger instance (4 states)

- Objective: maximize our worst-case profit
- 3 for (0, 0, 11, 0)
- 4 for (0, 2, 0, 8)
- 5 for ($9,9,0,0$)
- 3 for ($6,0,0,6$)
- 1 for (0, 0, 0, 10)
- What if they are partially acceptable?

Settings with large state spaces

- Large = exponentially large
- Too many to write down
- Examples:
- $S=S_{1} \times S_{2} \times \ldots S_{n}$
- E.g., $S_{1}=\{$ Biden not nom., Biden nom. $\}, S_{2}=\{$ Trump not nom., Trump nom. $\}, S=\{(-B,-T),(-B,+T),(+B,-T),(+B$, $+\mathrm{T})$ \}
- If all S_{i} have the same size k, there are k^{n} different states
- S is the set of all rankings of n candidates
- E.g., outcomes of a horse race
- n ! different states (assuming no ties)

Bidding languages

- How should trader (bidder) express preferences?
- Logical bidding languages [Fortnow et al. 2004]:
- (1) "If Trump nominated OR (DeSantis nominated AND Biden nominated), I want to receive $\$ 10$; l'm willing to pay $\$ 6$ for this."
- If the state is a ranking [Chen et al. 2007]:
- (2a) "If horse A ranks $2^{\text {nd }}, 3^{\text {rd }}$, or $4^{\text {th }}$ I want to receive $\$ 10$; I'm willing to pay $\$ 6$ for this."
- (2b) "If one of horses A, C, D rank $2^{\text {nd }}$, I want to receive \$10; l'm willing to pay $\$ 6$ for this."
- (2c) "If horse A ranks ahead of horse C, I want to receive \$10; l'm willing to pay $\$ 6$ for this."
- Winner determination problem is NP-hard for all of these, except for (2a) and (2b) which are in P if bids can be partially accepted

A different computational problem

 closely related to (separation problem for) winner determination- Given that the auctioneer has accepted some bids, what is the worst-case outcome (state) for the auctioneer?
- For example:
- Must pay 2 to trader A if horse X or Z is first
- Must pay 3 to trader B if horse Y is first or second
- Must pay 6 to trader C if horse Z is second or third
- Must pay 5 to trader D if horse X or Y is third
- Must pay 1 to trader E if horse X or Z is second

Reduction to weighted bipartite matching

Must pay 2 to trader A if horse X or Z is first
Must pay 3 to trader B if horse Y is first or second Must pay 6 to trader C if horse Z is second or third Must pay 5 to trader D if horse X or Y is third
Must pay 1 to trader E if horse X or Z is second

