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Set Cover (a computational problem)

• We are given:

– A finite set S = {1, …, n}

– A collection of subsets of S: S1, S2, …, Sm

• We are asked:

– Find a subset T of {1, …, m} such that Uj in TSj= S

– Minimize |T|

• Decision variant of the problem: 

– we are additionally given a target size k, and

– asked whether a T of size at most k will suffice

• One instance of the set cover problem:

S = {1, …, 6}, S1 = {1,2,4}, S2 = {3,4,5}, S3 = 
{1,3,6}, S4 = {2,3,5}, S5 = {4,5,6}, S6 = {1,3}



Visualizing Set Cover
• S = {1, …, 6}, S1 = {1,2,4}, S2 = {3,4,5}, S3 = 

{1,3,6}, S4 = {2,3,5}, S5 = {4,5,6}, S6 = {1,3}

1

3

6 5

4

2



Using glpsol to solve set cover 

instances

• How do we model set cover as an integer program?

• See examples



Algorithms and runtime
• We saw:

– the runtime of glpsol on set cover instances increases 
rapidly as the instances’ sizes increase

– if we drop the integrality constraint, can scale to larger 
instances

• Questions:
– Using glpsol on our integer program formulation is but one 

algorithm – maybe other algorithms are faster?
• different formulation; different optimization package (e.g., CPLEX); 

simply going through all the combinations one by one; …

– What is “fast enough”? 

– Do (mixed) integer programs always take more time to solve 
than linear programs?

– Do set cover instances fundamentally take a long time to 
solve?



A simpler problem: sorting (see associated spreadsheet)

• Given a list of numbers, sort them

• (Really) dumb algorithm: Randomly perturb the 
numbers.  See if they happen to be ordered.  If not, 
randomly perturb the whole list again, etc.

• Reasonably smart algorithm: Find the smallest 
number.  List it first.  Continue on to the next number, 
etc.

• Smart algorithm (MergeSort):
– It is easy to merge two lists of numbers, each of which is 

already sorted, into a single sorted list

– So: divide the list into two equal parts, sort each part with 
some method, then merge the two sorted lists into a single 
sorted list

– … actually, to sort each of the parts, we can again use 
MergeSort!  (The algorithm “calls itself” as a subroutine. 
This idea is called recursion.)  Etc.



Polynomial time

• Let |x| be the size of problem instance x (e.g., the size 
of the file in the .lp language)

• Let a be an algorithm for the problem

• Suppose that for any x, runtime(a,x) < cf(|x|) for some 
constant c and function f

Then we say algorithm a’s runtime is O(f(|x|))

• a is a polynomial-time algorithm if it is O(f(|x|)) for 
some polynomial function f

• P is the class of all problems that have at least one 
polynomial-time algorithm

• Many people consider an algorithm efficient if and 
only if it is polynomial-time



Two algorithms for a problem

n = |x|

runtime 2n22n
run of 

algorithm 1

run of 

algorithm 2

Algorithm 1 is O(n2)

(a polynomial-time 

algorithm)

Algorithm 2 is not O(nk)

for any constant k

(not a polynomial-time 

algorithm)

The problem is in P



Linear programming and (mixed) 

integer programming

• LP and (M)IP are also computational problems

• LP is in P

– Ironically, the most commonly used LP algorithms 
are not polynomial-time (but “usually” polynomial 
time)

• (M)IP is not known to be in P

– Most people consider this unlikely



Reductions

• Sometimes you can reformulate problem A in 
terms of problem B (i.e., reduce A to B)

– E.g., we have seen how to formulate several 
problems as linear programs or integer programs

• In this case problem A is at most as hard as 
problem B

– Since LP is in P, all problems that we can formulate 
using LP are in P

– Caveat: only true if the linear program itself can be 
created in polynomial time!



NP (“nondeterministic polynomial time”)

• Recall: decision problems require a yes or no 
answer

• NP: the class of all decision problems such that 
if the answer is yes, there is a simple proof of 
that

• E.g., “does there exist a set cover of size k?”

• If yes, then just show which subsets to choose!

• Technically:

– The proof must have polynomial length

– The correctness of the proof must be verifiable in 
polynomial time



P vs. NP

• Open problem: is it true that P=NP?

• The most important open problem in theoretical 
computer science (maybe in mathematics?)

• $1,000,000 Clay Mathematics Institute Prize

• Most people believe P is not NP

• If P were equal to NP…
– Current cryptographic techniques can be broken in 

polynomial time

– Computers may be able to solve many difficult mathematical 
problems…

• … including, maybe, some other Clay Mathematics Institute Prizes! 




NP-hardness
• A problem is NP-hard if the following is true:

– Suppose that it is in P

– Then P=NP

• So, trying to find a polynomial-time algorithm for it is 
like trying to prove P=NP

• Set cover is NP-hard

• Typical way to prove problem Q is NP-hard:
– Take a known NP-hard problem Q’

– Reduce it to your problem Q 
• (in polynomial time)

• E.g., (M)IP is NP-hard, because we have already 
reduced set cover to it
– (M)IP is more general than set cover, so it can’t be easier

• A problem is NP-complete if it is 1) in NP, and 2) NP-hard



Reductions:
To show problem Q is easy:

Q
Problem known to be 

easy (e.g., LP)

reduce

To show problem Q is (NP-)hard:

Q
Problem known to be 

(NP-)hard

(e.g., set cover, (M)IP)

reduce

ABSOLUTELY NOT A PROOF OF NP-HARDNESS:

Q MIP
reduce



Independent Set

• In the below graph, does there exist a subset of 
vertices, of size 4, such that there is no edge between 
members of the subset?

• General problem (decision variant): given a graph and 
a number k, are there k vertices with no edges 
between them?

• NP-complete



Reducing independent set 

to set cover

• In set cover instance (decision variant), 
– let S = {1,2,3,4,5,6,7,8,9} (set of edges), 

– for each vertex let there be a subset with the vertex’s 
adjacent edges: {1,4}, {1,2,5}, {2,3}, {4,6,7}, {3,6,8,9}, {9}, 
{5,7,8}

– target size = #vertices - k = 7 - 4 = 3

• Claim: answer to both instances is the same (why??)

• So which of the two problems is harder?
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Weighted bipartite matching

• Match each node on the left with one node on the 
right (can only use each node once)

• Minimize total cost (weights on the chosen edges)

3

4

5

2

1

6

7

3

1



Weighted bipartite matching…
• minimize cij xij

• subject to

• for every i, Σj xij = 1

• for every j, Σi xij = 1

• for every i, j, xij ≥ 0

• Theorem [Birkhoff-von Neumann]: this linear program 
always has an optimal solution consisting of just 
integers
– and typical LP solving algorithms will return such a solution

• So weighted bipartite matching is in P


