
Computational Microeconomics

Homework 5: Bayesian games and Generalized

Vickrey Auction (due Dec. 6 before 5pm)

Please read the rules for assignments on the course web page (http://www.
cs.cmu.edu/~15326-f24/). Use Piazza for questions and Gradescope to turn
this in. For all questions, always hand in both code and output, typically .mod
and .out files (and do not simply put everything in a .pdf).

Please use clear variable names and write comments in your code where ap-
propriate (you can put comments between /* and */, or start a line with #).

1. Funding a project.
There is a project that needs funding. Two agents can fund the project.

Each agent has two choices: 1. Pay 1 to fund the project; 2. Pay 0. Depending
on funding, the project may succeed or fail. If the total amount of money paid
by the agents is 2, then the project will succeed with probability 1. If the total
amount is 1, then the project will succeed with probability 1/3. If the total
amount is 0, then the project will succeed with probability 0.

Each agent i (i ∈ {1, 2}) has a valuation vi for a successful project. (Failed
projects are worthless.) This valuation does not depend on whether the agent
contributed or not (the agent can make use of the project regardless). Each
valuation is drawn uniformly at random from [0, 4].

For example, if agent 1 draws valuation 2 and pays 0, and agent 2 draws
valuation 3 and pays 1, then:

• The probability of a successful project is 1/3;

• Agent 1’s expected utility is (1/3) · 2− 0 = 2/3;

• Agent 2’s expected utility is (1/3) · 3− 1 = 0.

(a) Show that the following strategy is a Bayes-Nash equilibrium of this
game (if both players use it): pay 1 if and only if your valuation is at least 2.
(Hint: show that if the player’s valuation is 2, then she is indifferent between
the two actions, given that the other player uses this strategy.)

(b) More generally, suppose that each player’s valuation is drawn (indepen-
dently) from some arbitrary distribution with cumulative density function F
(but keep everything else the same). Show that the following is a Bayes-Nash
equilibrium of this game (if both players use it): pay if and only if your valua-
tion is at least x, where x is the solution to F (x) · x− 2x+ 3 = 0.

1

http://www.cs.cmu.edu/~15326-f24/
http://www.cs.cmu.edu/~15326-f24/

2. Generalized Vickrey Auction (= Clarke mechanism on combi-
natorial auctions).

Consider the following 3 bids in a combinatorial auction with 3 items (with
free disposal):

({a, b}, 10) XOR ({c}, 4)
({a, b}, 6) XOR ({b, c}, 9)
({a}, 3) XOR ({a, b, c}, 11)
Solve the winner determination problem, and compute the GVA (Clarke)

payments for the winning bidders. (Remember to remove each bidder’s entire
bid when calculating her payment.)

3. A compact LP for two-player zero-sum Bayesian games.
For most of the Bayesian games that we studied in class, a player only cares

about her own type, and not about the types of the other players (except for
how those types influence the behavior of the other players). But in general,
a player can care about other players’ types as well. In a two-player zero-sum
Bayesian game, if one player cares about her type, then the other player must
care about that type as well, since the game is zero-sum. But each player only
sees her own type. For example, you might imagine a card game in which both
players draw cards once at the beginning (your type is your hand of cards), then
simultaneously each take an action, and then the cards and the actions together
determine the payoffs.

How can we solve for a maximin strategy for player 1? We could convert
the game to normal form and then use our usual linear program for maximin
strategies. However, the normal form in general is going to have exponential
size, so that is not the best approach. Instead, you will develop a more compact
linear program in this problem.

You should have parameters u(θ1, θ2, a1, a2) (this is the utility of player 1;
we don’t need to have a separate parameter for player 2’s utility because the
game is zero-sum) and P (θ1, θ2) (the joint probability of θ1, θ2; we will allow
them to be correlated). You should have a variable σ(θ1, a1) for the probability
player 1 places on a1 if she has type θ1. You should also have a variable vθ2
for the value player 1 will get from the case where player 2 has type θ2 (i.e.,
how much this case contributes to the total expected value of the whole game);
the sum of these should be the overall value that player 1 gets out of the entire
game. You should have a constraint for every combination of θ2 and a2 to make
sure the vθ2 variables take sensible values, given that player 2 tries to minimize
these. Finally, you should have a constraint for every θ1 that the σ probabilities
add up to 1 for that type.

(Notice that the types of things that we have variables for for the one player
are the types of things that we have constraints for for the other player. This
is no accident; in the dual of the linear program, the roles will be reversed.)

Hint: If player 2 uses (pure) strategy s(θ2), then player 1’s utility can be
expressed as

∑
θ2

[∑
θ1
P (θ1, θ2)

∑
a1
σ(θ1, a1)u(θ1, θ2, a1, s(θ2))

]
. The part be-

tween the right brackets ([and]) should correspond to vθ2 if s is a best-response
strategy to σ.

2

You should complete the following linear program and test it with the in-
stance in it (Instance 1). But do NOT turn it in with this instance; you should
turn it in with Instance 2, further below.

set THETA1; # Types of player 1

set THETA2; # Types of player 2

set A1; # Actions of player 1

set A2; # Actions of player 2

param u{THETA1, THETA2, A1, A2}; # Utility of player 1

param P{THETA1, THETA2}; # Joint probability of types

var sigma{THETA1, A1} >= 0; # Strategy of player 1

var v{THETA2}; # Value for each type of player 2

Objective: Maximize player 1’s total expected value

maximize total_value: # YOUR TASK IS TO COMPLETE THIS

Constraints

s.t. # YOUR TASK IS TO COMPLETE THIS

data;

set THETA1 := High Low; # Types of player 1 (High card or Low card)

set THETA2 := High Low; # Types of player 2 (High card or Low card)

set A1 := Bet Fold; # Actions of player 1

set A2 := Bet Fold; # Actions of player 2

param u :=

[High,High,*,*]: Bet Fold :=

Bet 5 10

Fold -1 -1

[High,Low,*,*]: Bet Fold :=

Bet 15 5

Fold -1 -1

[Low,High,*,*]: Bet Fold :=

Bet -5 2

Fold -1 -1

[Low,Low,*,*]: Bet Fold :=

Bet -1 -1

Fold -1 -1

;

param P:

High Low :=

High 0.25 0.25

Low 0.25 0.25;

end;

For the above instance (Instance 1) you should get an optimal total value of

3

2, which is reached with: always Bet when High and always Fold when Low, i.e.,
sigma[High,Bet]=1, sigma[High,Fold]=0, sigma[Low,Bet]=0, sigma[Low,Fold]=1,
v[High]=v[Low]=1.

Now modify the data part as follows, corresponding to Instance 2. Turn it
in with this.

data;

set THETA1 := High Low; # Types of player 1 (High card or Low card)

set THETA2 := High Low; # Types of player 2 (High card or Low card)

set A1 := Bet Fold; # Actions of player 1

set A2 := Bet Fold; # Actions of player 2

param u :=

[High,High,*,*]: Bet Fold :=

Bet 8 0

Fold 0 -2

[High,Low,*,*]: Bet Fold :=

Bet 12 3

Fold 0 -1

[Low,High,*,*]: Bet Fold :=

Bet -30 1

Fold 0 -3

[Low,Low,*,*]: Bet Fold :=

Bet 4 -2

Fold 0 -1

;

param P:

High Low :=

High 0.3 0.2

Low 0.2 0.3;

end;

4

