
Assignment 1
Variations on a Theme

15-414: Bug Catching: Automated Program Verification

Due 23:59pm, Tuesday, February 16, 2021
80 pts

This assignment is due on the above date and it must be submitted electronically on Grade-
scope. Please carefully read the policies on collaboration and credit on the course web pages at
http://www.cs.cmu.edu/~15414/assignments.html.

Working With Why3

Before you begin this assignment, you will need to install Why3 and the relevant provers. To do
so, please follow the installation instructions on the course website (https://www.cs.cmu.edu/
~15414/misc/installation.pdf).

To help you out with Why3, we’ve provided some useful commands below:

• To verify using the command line, run why3 prove -P <prover> <filename>.mlw. This is
useful for simple programs where more fine-grained control over the provers is unnecessary,
as well as for intermediate checking. However, your final submission should include proof
sessions as created by the IDE.

• To open the Why3 IDE, run why3 ide <filename>.mlw.

– When you attempt to prove the goals in a file filename.mlw using the IDE, a folder
called filename will be created, containing a proof session. Make sure that you always
save the current proof session when you exit the IDE. To check your session after the
fact, you can run the following two commands:

why3 replay filename # should print that everything replayed OK

why3 session info --stats filename # prints a summary of the goals

– Although it’s not possible to modify code directly from the IDE, if you make changes
in a different editor (VSCode, Atom, etc.), you can refresh the IDE session with Ctrl+R.

What To Hand In

You should hand in the file asst1.zip, which you can generate by running make. This will include
all of the raw mlw files, as well as the proof sessions created by the IDE.

ASSIGNMENT 1 DUE 23:59PM, TUESDAY, FEBRUARY 16, 2021
80 PTS

http://www.cs.cmu.edu/~15414/assignments.html
https://www.cs.cmu.edu/~15414/misc/installation.pdf
https://www.cs.cmu.edu/~15414/misc/installation.pdf


Variations on a Theme HW1.2

1 Negative Rabbits (20 pts)

The Fibonacci sequence may be extended to negative numbers simply by applying the definition
fib(0) = 0, fib(1) = 1, and fib(i) + fib(i + 1) = fib(i + 2) to all integers. In this problem we ask
you to rewrite the specification and implementations of the imperative and functional Fibonacci
functions to cover all integers. Your code should be similar in its efficiency to the implementation
we developed and proved in Lectures 1 and 2 which you can find in the file fib.mlw.

Task 1 (10 pts). Provide a verified imperative implementation of Fibonacci numbers fib_loop.

Task 2 (10 pts). Provide a verified functional implementation of Fibonacci numbers fib_pure.

Both of these functions should be in the file fib.mlw.

2 The Fine Print (10 pts)

Unlike software license agreements that nobody ever reads (I agree!), program contracts should
be studied carefully because they might not mean what you think at first and you may be left
holding the bag. The following is an incorrect attempt to implement an iterative factorial function
(which you can find in the file fact.mlw).

1 module Factorial

2

3 use int.Int

4

5 function factorial (n:int):int

6 axiom factorial0: factorial 0 = 1

7 axiom factorialn: forall n. n > 0 -> factorial n = n * factorial (n - 1)

8

9 let fact(n:int) : int =

10 requires { n >= 0 }

11 ensures { result = factorial n }

12 let ref i = 0 in

13 let ref r = 1 in

14 while i < n do

15 invariant { 0 <= i <= n }

16 invariant { r = factorial i }

17 variant { n-i }

18 r <- r * i ;

19 i <- i + 1 ;

20 done ;

21 r

22

23 end

In each of the following tasks you should change the contracts, and only the contracts (except
in part 5), so that the command

why3 prove -P alt-ergo fact.mlw

succeeds in verifying the code.

Task 3 (10 pts).

1. You may remove two lines.

ASSIGNMENT 1 DUE 23:59PM, TUESDAY, FEBRUARY 16, 2021
80 PTS



Variations on a Theme HW1.3

2. You may add conjunction /\ and falsehoold false, as many copies as you wish.

3. You may add disjunction \/ and truth true, as many copies as you with.

4. You may add comparison < between variables and implication ->, as many copies as you
wish.

5. You may swap any two lines (not restricted to contracts).

Name your functions fact_i for 1 ≤ i ≤ 5 and place them in the file fact.mlw.

3 Queue Up (20 pts)

In this problem we ask you to refactor the implementation of queues in queue.mlw by using the
sequence representation as a model of the queue state.

Task 4 (20 pts). Provide a verified implementation of queues (with empty, enq, and deq operations)
where the sequence represented by the queue is carried as a model of the data structure. That is,
use the type

1 type queue ’a = { front : list ’a ;

2 back : list ’a ;

3 ghost model : list ’a }

where q.model is the state of the queue represented as a list. This property should be captured as
a data structure invariant. Make sure there are no redundant pre- or post-conditions in your code.

The ghost annotation here means that the model field of the record can only be used in con-
tracts and other ghost fields and variables. It is for verification only and can be safely erased when
the program is compiled. Ghosts are discussed in more detail in Lecture 4.

Place your implementation in the file queue.mlw.

4 Differentiate Discretely (30 pts)

Discrete differentiation is an operation that replaces a sequence such as 2, 5, 10, 17, 26 by the differ-
ences between consecutive elements, 3, 5, 7, 9, in this case. Iterating the process once more give us
2, 2, 2. Even though we are not pursuing it in this problem, it is possible to determine a polynomial
representation of the sequence from the iterated finite differences (here: x2 + 2x+ 2).

Task 5 (15 pts). Write a verified function diffs (a : array int) : array int that returns a new
array of differences between the elements of a, starting with a[1]−a[0], a[2]−a[1], etc. Your function
should not modify a itself. The length of the output array should be one less than the length of the
input array.

Task 6 (15 pts). Write a verified function diffs_in_place (a : array int) : unit that replaces
each element in the array by the difference to the next one, without allocating a new array. The
last element can be arbitrary.

[Hint: for working with mutable arrays we found the alt-ergo and Z3 provers to be generally
more effective than CVC4. Also, the array.ArrayEq standard library may be helpful for concise
specifications.]

Place your implementations in the file diff.mlw.

ASSIGNMENT 1 DUE 23:59PM, TUESDAY, FEBRUARY 16, 2021
80 PTS


	Negative Rabbits (20 pts)
	The Fine Print (10 pts)
	Queue Up (20 pts)
	Differentiate Discretely (30 pts)

