
Assignment 2
Verification at Every Tern

15-414: Bug Catching: Automated Program Verification

Due 23:59pm, Thursday, February 25, 2021
90 pts

This assignment is due on the above date and it must be submitted electronically on Grade-
scope. Please carefully read the policies on collaboration and credit on the course web pages at
http://www.cs.cmu.edu/~15414/assignments.html.

What To Hand In

You should hand in the following files on Gradescope:

• Submit the file asst2.zip to Assignment 2 (Code). You can generate this file by running
make handin. This will include your solution ternary.mlw, the proof session in ternary/,
and bonus.mlw if you decide to work on this question.

• Submit a PDF containing your answers to the written questions to Assignment 2 (Written).
You may use the file asst2-sol.tex as a template and submit asst2-sol.pdf.

Make sure your session directories and your PDF solution files are up to date before
you create the handin file.

Using LaTeX

We prefer the answer to your written questions to be typeset in LaTeX, but as long as you hand
in a readable PDF with your solutions it is not a requirement. We package the assignment source
asst2.tex and a solution template asst2-sol.tex in the handout to get you started on this.

ASSIGNMENT 2 DUE 23:59PM, THURSDAY, FEBRUARY 25, 2021
90 PTS

http://www.cs.cmu.edu/~15414/assignments.html

Verification at Every Tern HW2.2

1 Leave No Tern Unstoned (60 pts)

Balanced ternary numbers are a representation of integers with some remarkable properties. This
representation has three digits with values -1, 0, and 1. It represents any integer uniquely (assum-
ing no leading 0s) and has some nice symmetry properties. For example, a number is negated just
be negating every digit. An early computer built in Moscow in 1958 actually used balanced ternary
numbers and ternary logic, instead of the binary system we are now used to. The Wikipedia article
on balanced ternary provides an introduction and more details.

In this problem you are asked to implement and verify some simple functions over ternary
numbers. This is partly an exercise is specification suitable for verification, and partly and ex-
ercise in working with data types. It may be helpful to review regular expressions (Lecture 4
and live code regexp.mlw) and how we wrote the axioms specifying the interpretation of regular
expressions.

Each function you write should be verified against contracts expressing the correct-
ness of your implementation.

The digits d should be either 1, 0, or 1 with values f(1) = −1, f(0) = 0 and f(1) = 1. The value
of a ternary number dn . . . d0 is determined by

v(dn . . . d0) =
n∑

i=0

f(di) 3
i

From a verification perspective, this is difficult to work with due to its use of exponentials. More
helpful is the following recurrence:

v(dn . . . d0) = f(d0) + 3 v(dn . . . d1)
v() = 0

This suggest representing ternary numbers as a list of digits, with the least significant bit first. Note
that the representation of a number is not unique, because one can add arbitrarily many leading
zeros without changing its value.

For concreteness, we suggest the following representation (which you can find in the file
ternary.mlw, although you are free to choose a different one. If you choose a different repre-
sentation, please briefly explain it in a comment in the file.

1 type digit = Z0 | P1 | M1

2 let function f (d:digit) : int =

3 match d with Z0 -> 0 | P1 -> 1 | M1 -> -1 end

4

5 type tern = list digit

6 (* least significant digit first *)

7 (* trailing Z0 digits are allowed *)

Note that we defined let function f which means that f can be used logically, in contracts, but
also computationally. Here are several examples:

Integer Ternary WhyML

6 1 1 0 Cons Z0 (ConsM1 (Cons P1Nil))

− 2 1 1 Cons P1 (ConsM1Nil)

ASSIGNMENT 2 DUE 23:59PM, THURSDAY, FEBRUARY 25, 2021
90 PTS

https://en.wikipedia.org/wiki/Balanced_ternary
http://www.cs.cmu.edu/~15414/lectures/04-ghosts.pdf
http://www.cs.cmu.edu/~15414/lectures/04-ghosts/regexp.mlw

Verification at Every Tern HW2.3

Task 1 (10 pts). Specify a predicate value (t:tern) (a:int) that relates a ternary number to its
integer value by a set of axioms.

Task 2 (5 pts). Define a function to_int (t:tern) : int converting a ternary number t to the
integer it represents.

Task 3 (10 pts). Define a function from_int (a:int) : tern converting an integer a to a ternary
number. The module int.EuclideanDivision that defines div and mod functions may be helpful.

You may not use the functions to_int and from_int in the remaining tasks. Those functions
should be defined directly on the ternary representation.

Task 4 (10 pts). Define functions inc (t:tern) : tern and dec (t:tern) : term that increment
and decrement t, respectively.

Task 5 (5 pts). Define a function neg (t:tern) : tern that negates t.

Task 6 (15 pts). Define a function plus (s:tern) (t:tern) : tern that computes the sum of s
and t.

Task 7 (5 pts). Define a function is0 (t:tern) : bool that tests if t has value zero.

2 It’s a Question of Semantics (30 pts)

In this collection of problems we work with the simple while language from Lecture 5.

Task 8 (10 pts). Conjecture the semantics of the following program (let’s call it α0):

1 ?(n >= 0) ;

2 x <- n ;

3 y <- 1 ;

4 while (x > y)

5 (x <- div (x+y) 2 ;

6 y <- div n x)

where div is integer division. You should describe your conjectured semantics in terms of the
relation between ω and ν in

ωJα0Kν

For the while loop, describe ωinit at the beginning of the loop and ωdone at the end, but you do not
need to describe the intermediate states.

Task 9 (Bonus Task, not for credit). Describe the intermediate states in the above while loop and
prove the correctness of the implementation (possibly with reference to the literature). Can you
coax Why3 into verifying the correctness of a suitably translated program? Modifications that
retain the algorithmic essence are fair game.

ASSIGNMENT 2 DUE 23:59PM, THURSDAY, FEBRUARY 25, 2021
90 PTS

http://www.cs.cmu.edu/~15414/lectures/05-semantics.pdf

Verification at Every Tern HW2.4

Task 10 (5 pts). Define the semantics of a for-loop

for x e1 e2 α

which goes through the values for x between the values of e1 and e2. It starts at the value of e1
and counts up or down to the value of e2, inclusively, executing α each time.

Task 11 (10 pts). Define the semantics of a constructs

let x e α

which locally binds x to the value of e while executing α. At the end of α, the value of x should
revert to what it was before the let.

Task 12 (5 pts). Define an alternative semantics of the for-loop by showing how to translate it into
the while language, including the let construct from the preceding task. You do not have to prove
that the two definitions are equivalent.

ASSIGNMENT 2 DUE 23:59PM, THURSDAY, FEBRUARY 25, 2021
90 PTS

	Leave No Tern Unstoned (60 pts)
	It's a Question of Semantics (30 pts)

