
Assignment 5
(I can’t get no) Satisfaction

15-414: Bug Catching: Automated Program Verification

Due 23:59pm, Tuesday, April 6, 2021
85 pts

This assignment is due on the above date and it must be submitted electronically on Grade-
scope. Please carefully read the policies on collaboration and credit on the course web pages at
http://www.cs.cmu.edu/~15414/assignments.html.

What To Hand In

You should hand in the following files on Gradescope:

• Submit the file asst5.zip to Assignment 5 (Code). You can generate this file by running
make handin. This will include your solutions baby-sat.mlw, and the proof sessions in
baby-sat/.

• Submit a PDF containing your answers to the written questions to Assignment 5 (Written).
You may use the file asst5-sol.tex as a template and submit asst5-sol.pdf.

Make sure your session directories and your PDF solution files are up to date before
you create the handin file.

Using LaTeX

We prefer the answer to your written questions to be typeset in LaTeX, but as long as you hand
in a readable PDF with your solutions it is not a requirement. We package the assignment source
asst5.tex and a solution template asst5-sol.tex in the handout to get you started on this.

ASSIGNMENT 5 DUE 23:59PM, TUESDAY, APRIL 6, 2021
85 PTS

http://www.cs.cmu.edu/~15414/assignments.html

(I can’t get no) Satisfaction HW5.2

1 Propagations and Conflicts (25 pts)

The pigeonhole problem asks us to find a one-to-one mapping between n pigeons and m holes.
Obviously, this isn’t possible when n > m. Consider an encoding of this problem as SAT for n
pigeons and n − 1 holes, where we have the following CNF clauses and propositional variables
pij which assert that pigeon i is placed in hole j.

• Pigeon clauses: For each pigeon 1 ≤ i ≤ n, assert that it is placed in some hole.

pi,1 ∨ . . . ∨ pi,n−1

• Hole clauses: For each hole 1 ≤ j < n and each pair of pigeons 1 ≤ i < k ≤ n, these two
pigeons aren’t placed in the same hole:

¬pi,j ∨ ¬pk,j

Task 1 (15 pts). Write down a CNF for the pigeonhole problem for n = 3 and apply the DPLL
algorithm with clause learning to it. You should write down the steps of your evaluation in the
following form:

(1) Decide p

(2) Unit propagate q from clause C2

(3) Decide ¬r

(4) Unit propagate s from clause C1

(5) Conflicted clause C1

(6) Backtrack to r

(7) Learn conflict clause ¬p ∨ r

(8) ...

ASSIGNMENT 5 DUE 23:59PM, TUESDAY, APRIL 6, 2021
85 PTS

(I can’t get no) Satisfaction HW5.3

Task 2 (10 pts). Consider the following CNF formula:

(¬x1 ∨ ¬x2 ∨ ¬x3)︸ ︷︷ ︸
C1

∧ (¬x1 ∨ ¬x3 ∨ ¬x4)︸ ︷︷ ︸
C2

∧ (¬x1 ∨ ¬x5)︸ ︷︷ ︸
C3

∧ (x2 ∨ x4 ∨ x5)︸ ︷︷ ︸
C4

∧ (x6 ∨ x7)︸ ︷︷ ︸
C5

Suppose you make the following decisions:

• Decide x6 = 0

• Unit propagate x7 from clause C5

• Decide x1 = 1

• Unit propagate ¬x5 from clause C3

• Decide x3 = 1

• Unit propagate ¬x2 from clause C1

• Unit propagate ¬x4 from clause C2

• Conflicted clause C4

Show a learned clause that you can derive from this conflict by either showing a sequence of
resolution steps or drawing the implication graph and a possible separating cut. Please refer to
Lecture 12 on ways to generate conflict clauses. 1

2 Encodings (25 pts)

Task 3 (10 pts). For Boolean variables, x1, x2, x3, and x4, write a CNF which is satisfied if and only
if at least two of the variables are set to true.

Colorings. Consider a 2-coloring problem for numbers 1 to 5 such that for every integer solution
a + b = c with 1 ≤ a < b < c ≤ n holds that a, b, and c do not have the same color. Note that the
possible sums with numbers 1 to 5 under these conditions are:

• 1 + 2 = 3

• 1 + 3 = 4

• 1 + 4 = 5

• 2 + 3 = 5

Task 4 (8 pts). Write a CNF encoding for this problem where each color is represented in unary, i.e.,
use one Boolean variable per color and number. Explain your reasoning for the different clauses
that you added to the formula.

Task 5 (7 pts). Write a CNF encoding for this problem where each color is represented in binary,
i.e., use one Boolean variable per number representing its color. Explain your reasoning for the
different clauses that you added to the formula.

1Available at https://www.cs.cmu.edu/~15414/lectures/12-sat-solving.pdf

ASSIGNMENT 5 DUE 23:59PM, TUESDAY, APRIL 6, 2021
85 PTS

https://www.cs.cmu.edu/~15414/lectures/12-sat-solving.pdf

(I can’t get no) Satisfaction HW5.4

3 Baby SAT steps (35 pts)

In this assignment, we will explore simple operations that can be performed over formulas in the
conjunctive normal form before we build our first verified SAT solver.

Consider the following types that define a variable (var), literal (lit: which is define as a pos-
itive or negative variable), clause, cnf formula, and valuation. Assume that the variables range
from 0 to nvars and that the cnf formulas have 0 or more variables.

1 type var = int

2 type lit = { var : var ; polarity : bool }

3 type clause = list lit

4 type cnf = { clauses : array clause ; nvars : int }

5 type valuation = array bool

An example of how a CNF is represented using this type is provided Figure 1. Besides, a
valuation (also called interpretation in some lecture notes) is represented as an array of booleans
whose ith component is the value of xi.

{ nvars = 4;

clauses = [

[{var=3; value=false}];

[{var=0; value=true}; {var=2; value=false}; {var=3; value=true}];

[{var=1; value=false}; {var=2; value=true}]] }

Figure 1: Representation of the formula ¬x3 ∧ (x0 ∨ ¬x2 ∨ x3) ∧ (¬x1 ∨ x2).

Task 6 (10 pts). Specify and implement a function eval_clause that takes a valuation ρ and a
clause c as its arguments and returns true if c is true for valuation ρ and false otherwise.

Task 7 (10 pts). Specify and implement a function eval_cnf that takes a valuation ρ and a formula
cnf in conjunctive normal form as its arguments and returns true if cnf is true for valuation ρ
and false otherwise.

ASSIGNMENT 5 DUE 23:59PM, TUESDAY, APRIL 6, 2021
85 PTS

(I can’t get no) Satisfaction HW5.5

Pure Literals

Any variable that only appears in either positive or negative literals is called pure, and their cor-
responding variables can always be assigned in a way that satisfies the literal. Thus, they do not
constrain the problem in a meaningful way, and can be assigned without making a choice. This is
called pure literal elimination and is one type of simplification that can be applied to CNF formulas.
Consider the following CNF formula:

(x1 ∨ x2)︸ ︷︷ ︸
C0

∧ (¬x1 ∨ x2)︸ ︷︷ ︸
C1

∧ (x1 ∨ ¬x2 ∨ x3)︸ ︷︷ ︸
C2

∧ (¬x1 ∨ x2 ∨ x3)︸ ︷︷ ︸
C3

Notice that x3 appears only as a positive literal in this formula. Hence, we can assign x3 to true
and satisfy the literal. This procedure will simplify the above formula into:

(x1 ∨ x2) ∧ (¬x1 ∨ x2) ∧ (x1 ∨ ¬x2 ∨ x3) ∧ (¬x1 ∨ x1 ∨ x3)
↔ (x1 ∨ x2) ∧ (¬x1 ∨ x2) ∧ (x1 ∨ ¬x2 ∨ >) ∧ (¬x1 ∨ x1 ∨ >)
↔ (x1 ∨ x2) ∧ (¬x1 ∨ x2)

Note that if a formula is satisfiable and if a literal l is pure, then it is always possible to have an
interpretation that satisfies the literal, i.e., assigns l to true if l is positive or to false if l is negative.

Task 8 (15 pts). Specify and implement a function pure_literal that takes a formula cnf in con-
junctive normal form and a literal l as its arguments and returns true if l is a pure literal and false

otherwise.

ASSIGNMENT 5 DUE 23:59PM, TUESDAY, APRIL 6, 2021
85 PTS

	Propagations and Conflicts (25 pts)
	Encodings (25 pts)
	Baby SAT steps (35 pts)

