
Assignment 7
Finding Unions

15-414: Bug Catching: Automated Program Verification

Due 23:59pm, Thursday, April 22, 2021
90 pts

This assignment is due on the above date and it must be submitted electronically on Grade-
scope. Please carefully read the policies on collaboration and credit on the course web pages at
http://www.cs.cmu.edu/~15414/assignments.html.

What To Hand In

You should hand in the following files on Gradescope:

• Submit the file asst7.zip to Assignment 7. You can generate this file by running make

handin. This will include your files missingP1.smt2, missingP2.smt2, and missingP12.smt2.
This will also include your solutions unionfind.mlw, and the proof sessions in unionfind/.

Make sure your session directories and your solution files are up to date before you
create the handin file.
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Finding Unions HW7.2

1 Program Equivalence (40 pts)

Consider the two programs C programs missingP1 and missingP2. Assume that the array “a”
has size n and contains unique integers ranging from 1 to n + 1. One of the integers is missing
in this array and the programs missingP1 and missingP2 find the missing element with different
strategies. For instance, if the array is initialized with elements {1, 3, 4}, then both missingP1 and
missingP2 will return the missing value 2. Show that these programs are equivalent for arrays of
size 3 (with integers ranging from 1 to 4) by encoding these programs to SMT using static single
assignment (SSA) and unrolling the loops. You should submit the .smt2 files missingP1.smt2

(Task 1), missingP2.smt2 (Task 2), and missingP12.smt2 (Task 3). Note that if you want to write
comments in .smt2 files, you can do this by using the symbol “;”.

1 int missingP1(int a[], int n)

2 {

3 int i, total;

4 total = (n + 1) * (n + 2) / 2;

5 for (i = 0; i < n; i++)

6 total -= a[i];

7 return total;

8 }

9

10 int missingP2(int a[], int n)

11 {

12 int i;

13 int x1 = a[0];

14 int x2 = 1;

15

16 for (i = 1; i < n; i++)

17 x1 = x1 ^ a[i]; // xor

18

19 for (i = 2; i <= n + 1; i++)

20 x2 = x2 ^ i; // xor

21

22 return (x1 ^ x2); // xor

23 }

Task 1 (15). Write a SMT formula in SMT-LIB format that symbolically encodes program misssingP1.
We describe here the main aspects of the SMT-LIB language that you will need to use. For this task,
you should use the theory of integer linear arithmetic to represent integers. The SMT-LIB format
accepts the usual operations over integers, i.e. =, <,>,<=, >=, ∗,−,+, /. You can use nega-
tion (not Bool Bool) to model not equal or the negation of any Boolean operator. For instance,
(assert (not (= (x y)))), would assert that x must be different from y.

The main operations over arrays are select and store. The operator select is relevant for
this task and takes as input an array and an index and returns the value of the array at that index.
For this task, you can initialize the first 3 elements of an unbounded array as depicted below.
Complete the rest of the formula by encoding the program to SMT. Do not forget the preconditions
of the problem that restrict the contents of the array.

1 (declare -fun p1n () Int)

2 (assert (= p1n 3))

3 (declare -fun p1ret () Int)

4 (declare -fun p1e1 () Int)

5 (declare -fun p1e2 () Int)
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6 (declare -fun p1e3 () Int)

7 (declare -fun p1a () (Array Int Int))

8 (assert (= (select p1a 0) p1e1))

9 (assert (= (select p1a 1) p1e2))

10 (assert (= (select p1a 2) p1e3))

11 ...

Variable p1ret should represent the return value of program missingP1. Note that after having
the SMT formula, you can run z3 on the formula and see that the solver will assign integer values
to variables p1e1, p1e2, and p1e3 that will correspond to the values in the array. The variable
p1ret will be assigned the missing integer value. You should already have z3 installed in your
system since we use it in Why3. To run z3, simply run the command:

$ z3 missingP1.smt2

Task 2 (15). Write an SMT formula in SMT-LIB format that symbolically encodes program missingP2.
For this task, you should use the theory of bitvectors to represent integers with bitvectors of bit-
width 8. The list of operations over bitvectors that may be useful for this task are:

• binary predicate for unsigned less than or equal: (bvule ( BitVec m) ( BitVec m) Bool)

• binary predicate for unsigned greater than or equal: (bvuge ( BitVec m) ( BitVec m)

Bool)

• addition modulo 2m: (bvadd ( BitVec m) ( BitVec m) ( BitVec m))

• multiplication modulo 2m: (bvmul ( BitVec m) ( BitVec m) ( BitVec m))

• unsigned division, truncating towards 0: (bvudiv ( BitVec m) ( BitVec m) ( BitVec

m))

• bitwise exclusive or: (bvxor ( BitVec m) ( BitVec m) ( BitVec m))

• creates a bitvector from an integer: ( int2bv 8) m

The full list of operators for bitvectors is available online. The array can be initialized in a
similar way as in the previous task. Complete the rest of the formula by encoding the program to
SMT. Do not forget the preconditions of the problem that restrict the contents of the array.

1 (declare -fun p2n () (_ BitVec 8))

2 (assert (= p2n ((_ int2bv 8) 3)))

3 (declare -fun p2ret () (_ BitVec 8))

4 (declare -fun p2e1 () (_ BitVec 8))

5 (declare -fun p2e2 () (_ BitVec 8))

6 (declare -fun p2e3 () (_ BitVec 8))

7 (declare -fun p2a () (Array Int (_ BitVec 8)))

8 (assert (= (select p2a 0) p2e1))

9 (assert (= (select p2a 1) p2e2))

10 (assert (= (select p2a 2) p2e3))

11 ...
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We also include the syntax for using int2bv to get the bitvector representation of an integer
for the value of 3. We suggest using different variable names than the previous formula since that
will be useful when writing the formula for Task 3. Variable p2ret should represent the return
value of program missingP2. As before, you can run z3 over this formula by using the command:

$ z3 missingP2.smt2

z3 will assign integer values to variables p2e1, p2e2, and p2e3 that will correspond to the
values in the array. As before, the variable p2ret will be assigned the missing integer value.

Task 3 (10). Use the previous formulas to write a SMT formula called missingP12.smt2 that en-
codes the equivalence between the two programs missingP1 and missingP2, i.e. for the same
inputs they will have the same output. You can run z3 over this formula using the command:

$ z3 missingP12.smt2

2 Union-Find (50 pts)

At the core of decision procedures or theorem provers for a variety of theories are algorithms
to compute the congruence closure of some equations including uninterpreted function symbols.
Even more fundamentally, congruence closure itself relies on computing and maintaining equiv-
alence classes of terms. An efficient data structure for this purpose is called union-find. You may
read, for example, the Wikipedia article on Disjoint-Set Data Structure. Union-find also has other
applications, such as in Kruskal’s algorithm for minimum spanning trees.

In this problem you will implement union-find and partially prove it correct. We explain below
exactly which properties you are asked to prove.

2.1 The Bare Algorithm

All elements that are to be divided into equivalence classes are represented as integers 0 ≤ x < size.
In a separate data structure maintained by a client, these could be mapped, for example, to terms.

Throughout the algorithm, each equivalence class maintains a unique representative element
which we visualize as the root of a tree. In addition, each element has a parent, with the represen-
tative of a class functioning as its own parent. We call such representatives roots.

To determine if two elements x and y are in the same equivalence class we ascend the tree to
find the representative of the classes for x and y, say, x̂ = findx and ŷ = find y. If x̂ = ŷ then x and
y are in the same class; otherwise they are not.

Initially, all elements are in their own (singleton) equivalence class and we call union to merge
equivalence classes. The operation unionx y should merge the equivalence classes for x and y. We
do this by calculating the representatives x̂ = findx and ŷ = find y. If these are equal we are done.
Otherwise, we set the parent of x̂ to be ŷ or the parent of ŷ to be x̂.

To decide between these two alternatives we maintain a rank for each root z that is a bound on
the longest chain of parent pointers for the tree below z. We set the parent of x̂ to ŷ if x̂ has strictly
smaller rank than ŷ and vice versa. If the ranks are equal, the choice is arbitrary, and we also have
to increase the rank of the resulting root by one.

Task 4 (25 pts). Implement the bare union-find data structure with the following types:
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1 type elem = int

2

3 type uf = { size : int ;

4 parent : array elem ;

5 rank : array int }

Here, parent[x] is the parent of element x, and x itself for the root. rank[x] is the rank of x (only
relevant if x is a root). Implement the following predicates and functions, following the informal
description and other sources as you see fit.

1 predicate is_root (uf : uf) (x : elem)

2 let uf_new (n : int) : uf

3 let find (uf : uf) (x : elem) : elem

4 let union (uf : uf) (x : elem) (y : elem) : unit

• is root uf x is true iff x is a root in uf .

• uf new n = uf returns a new union-find structure over elements 0 ≤ x < n, with each
element a root.

• find uf x = x̂ returns the root x̂ representing the equivalence class containing x.

• union uf x y modifies uf by merging the classes containing x and y.

Your contracts should be strong enough to verify that all array accesses are in bounds and that
the result of find is a root. You do not need to verify termination (use diverges instead) or any
other correctness properties of your functions.

Because the contracts essentially only specify safety and not correctness, it is your responsi-
bility to make sure your code properly implements the union-find data structure. However, you
do not need to implement the so-called path compression during the find operation (which further
improves the already excellent bound of n log(n) for n successive union-find operations).

The code for this task should be in a module UnionFindBare in the file unionfind.mlw.

2.2 Producing Proofs

In many practical scenarios where decision procedures or theorem provers are used, it is imprac-
tical to formally prove their correctness. That is unfortunate, as we want to be able to rely on the
results. To close this gap, we can write the prover so it produces a representation of a proof every
time it is run, or even verify that it could produce a proof when it gives a positive answer and
remain silent when it does not.

Applying this to union-find means we would like to instrument the code so that it can produce
a proof that any element is equivalent to the representative of the equivalence class it is in. We call
a proof that x and y belong to the same equivalence class a path from x to y. We have the following
constructors for paths, derived from the axioms for equivalence relations:

• reflx is a path from x to x.

• sym p is a path from y to x if p is a path from x to y.

• trans p y q is a path from x to z if p is a path from x to y and q is a path from y to z.
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Whenever unionx y is called, the client of the data structure must provide a path from x to y which
somehow justifies the equivalence. For example, if x = a + 1 and y = 1 + a, the client might
provide a path explaining that x and y are equivalent due to the commutativity of addition. The
implementation of union-find takes these on faith (they are the client’s responsibility, after all) but
can apply refl, sym, and trans to build longer paths from those that are given.

We keep the type of path abstract so that the implementation of union-find cannot “fake” any
paths. The properties listed above are summarized using the axioms below.

1 type path (* abstract *)

2 function refl (x : elem) : path

3 function sym (p : path) : path

4 function trans (p1 : path) (x : elem) (p2 : path) : path

5

6 predicate connects (p : path) (x : elem) (y : elem)

7 axiom c_refl : forall x. connects (refl x) x x

8 axiom c_sym : forall p x y. connects p x y -> connects (sym p) y x

9 axiom c_trans : forall x y z p q.

10 connects p x y -> connects q y z -> connects (trans p y q) x z

The union-find data structure now maintains a ghost array path of paths, where for every el-
ement x, path[x] is a path connecting x to parent[x]. This property should be guaranteed by the
data structure invariants. The information is sufficient to produce a path from x to the represen-
tative x̂ of its equivalence class.

Task 5 (25 pts). We update the interface as follows:

1 type uf = { size : int ;

2 parent : array elem ;

3 rank : array int ;

4 ghost path : array path }

5

6 let uf_new (n : int) : uf

7 let find (uf : uf) (x : elem) : (elem, ghost path)

8 let union (uf : uf) (x : elem) (y : elem) (ghost pxy : path) : unit

with the specifications

• find uf x = (x̂, p) should ensure that p is a path from x to x̂. This path should be constructed
while traversing the data structure. Your postcondition should enforce that p is indeed a
path from x to x̂.

• union uf x y p requires that p is a path from x to y. Since this function modifies uf by merging
the classes of x and y, it will need to update the path field to maintain the data structure
invariants.

Your code should include sufficient data structure invariants and contracts to guarantee these
properties for find and union. Your contracts still do not need to express, for example, that union
really represents a union. It therefore remains your responsibility that the code is correct.

The code for this task should be in a module UnionFindPath in the file unionfind.mlw. We
suggest you cut-and-paste some of your code for Task 4 as a starting point.
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As an example of the use of paths, consider a client who wishes to check if x and y are in the
same class and obtain a path as explicit evidence if they are. The client could write the following
function:

1 let eq_path (uf : uf) (x : elem) (y : elem) : ghost (option path) =

2 requires { 0 <= x < uf.size /\ 0 <= y < uf.size }

3 diverges

4 returns { | Some p -> connects p x y

5 | None -> true }

6 match (find uf x, find uf y) with

7 ((z, p), (z’, q)) -> if z = z’ then Some (trans p z (sym q)) else None

8 end

This function obtains no information if x and y do not have the same representative. Conceivably,
the union-find implementation could construct a model showing that x and y may be different,
but that is beyond the scope of this assignment.

Task 6 (10 pts extra credit). Update your path-producing implementation of Task 5 of find so it
performs path compression, as in the standard union-find algorithm. This must update not only
parent[y] but consequently also path[y] for each element y between x and x̂ in the tree.
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