
15-414: Bug Catching: Automated Program Verification

Lecture Notes on
Invariants for Arbitrary Loops

Matt Fredrikson

Carnegie Mellon University
Lecture 6

1 Introduction

The previous lecture provided axioms for compositional reasoning about deterministic
sequential programs. All the axioms compositionally reduce the truth of a postcondi-
tion of a more complex program to a logical combination of postconditions of simpler
programs. All axioms? Well, all the axioms but one: those about loops.

But putting loops aside for the moment, these axioms completely tell us what we
need to do to understand a program. All we need to do is to identify the top-level
operator of the program and apply the corresponding axiom from its left hand side to
its structurally simpler right hand side, which will eventually reduce the property of
a program to first-order logic with arithmetic but without programs. This process is
completely systematic.

So except for the (nontrivial) fact that we will have to hope that an SMT solver will
be able to handle the remaining arithmetic, our “only” problem is what we could pos-
sibly to with a loop. The unwinding axioms from the previous lecture were only par-
tially helpful, which is why this lecture investigates more comprehensive reasoning
techniques for loops. We follow an entirely systematic approach [Pla17, Chapter 7] to
understanding loop invariants, an induction technique for loops, which is of central sig-
nificance for program verification. We will also experience our share of the important
phenomenon of loop invariant search.

2 Derived Soundness

Recall the axioms that we introduced in the last lecture. Writing down axioms is one
thing. Making use of them for proofs is quite helpful, too. But if the axioms are wrong,
then that would not help making the programs any more correct. Consequently, it is

http://www.cs.cmu.edu/~15414/index.html

L6.2 Invariants for Arbitrary Loops

imperative that all axioms we adopt are indeed sound, so only allow us to prove for-
mulas that are actually valid. An axiom is sound iff all its instances are valid formulas,
so true in all states. The notes from the previous lecture give some examples of how to
show this by referring to the semantics of Dynamic Logic, in a similar way to how the
soundness of proof rules for propositional logic were established.

The [unfold] axiom can be justified to be sound in another way. Rather than arguing
by semantics, which would work, too, we can derive it with a sequent calculus proof
from the other axioms. After all other axioms are proved to be sound the derived axiom
[unfold] is thus sound too.

Lemma 1. The following axiom is a derived axiom, so can be proved from the other axioms in
sequent calculus, and is, thus, sound:

([unfold]) [while(Q)α]P ↔ (Q→ [α][while(Q)α]P) ∧ (¬Q→ P)

Proof. The axiom [unfold] can be proved from the other axioms by using some of them
in the backwards implication direction:

∗
[unwind] ` [while(Q)α]P ↔ [if(Q) {α; while(Q)α}]P

[if] ` [while(Q)α]P ↔ (Q→ [α; while(Q)α]P) ∧ (¬Q→ P)
[;] ` [while(Q)α]P ↔ (Q→ [α][while(Q)α]P) ∧ (¬Q→ P)

Every time we need the derived axiom [unfold], we could instead write down this
sequent proof to prove it. It just won’t be very efficient, so instead we will settle for
deriving axiom [unfold] in the sequent calculus once and then just believing it from
then on.

This gives us two ways of establishing the soundness of an axiom. Either by a math-
ematical proof from the semantics of the operators. Or as a derived axiom by a formal
proof in sequent calculus from other axioms and proof rules that have already been
proved to be sound. Of course, the first time a new operator is mentioned in any of our
axioms, we cannot derive it yet but have to work from its semantics. But the second
time, it may become possible to argue as in a derived axiom.

3 Recall: Loop the Loop

Recall the two (equivalent) axioms for handling while-loops by unwinding the loop:
([unwind]) [while(Q)α]P ↔ [if(Q) {α; while(Q)α}]P

([unfold]) [while(Q)α]P ↔ (Q→ [α][while(Q)α]P) ∧ (¬Q→ P)

Especially the [unfold] axiom makes it very apparent that the deficiency with both
axioms is that, when used from left to right, they reduce a property of a while loop to

15-414 LECTURE NOTES MATT FREDRIKSON

Invariants for Arbitrary Loops L6.3

some logic and then the same property of the same loop again. While the isolated α loop
body can be handled with the other axioms, the while(Q)α loop is still remaining and
could be handled by another [unfold] but then the same issue persists. This principle
of successively unrolling the loop is still perfectly helpful for loops that terminate right
away or that always terminate after 1 rounds or after 2 rounds or after some other fixed
finite maximum number of iterations such as 5. But “most” loops are not like that. If
the loop terminates after a very large number of loop iterations, or if we cannot know
ahead of time after which fixed natural number of loop iterations it terminates, then
unrolling the loop does not help, because there will always be a conjunct referring to
what happens if the loop repeats again.1

4 Loops and Nondeterministic Repetition

In order to resolve these issues with how to prove loops, we will follow a completely
systematic approach to develop compositional proof principles for loops. Successive
loop unrolling with the [unfold] axiom ran into the difficulty that it had to predict
perfectly when the loop stops because the loop condition Q is false. The number of
iterations for a while loop is hard to predict. It was of course defined exactly in the
semantics:

5. [[while(Q)α]] =
{

(ω, ν) : there are an n and states µ0 = ω, µ1, µ2, . . . , µn = ν
such that for all 0 ≤ i < n: 1© the loop condition is true µi |= Q and 2© from
state µi is state µi+1 reachable by running α so (µi, µi+1) ∈ [[α]] and 3© the loop
condition is false µn 6|= Q in the end

}
But mapping this exact termination of while loops into logic will be a distraction from
the essential aspects. In order to understand the principle of repetition in loops we will,
instead, make it principally unpredictable when exactly the loop terminates by entirely
removing the loop guard Q. For one thing, it is easier to understand the principle of
repetition without simultaneously having to worry about the impact that loop guards
have. After understanding the principle of repetition, we will then come back to apply
the knowledge we gained from that excursion to the original question of while loops.

In order to understand the principle of repetition, we will, in this lecture, investigate
the nondeterministic repetition α∗. The effect of the nondeterministic repetition α∗ is to
repeat the program α any arbitrary n number of times for any nondeterministically cho-
sen natural number n ∈ N. We cannot predict n. Just like in a regular expression such
as a∗ which matches any natural number of occurrences of the letter a, for example aaa
or aaaaa, the nondeterministic repetition α∗ repeats α any number of times, for exam-
ple α;α;α or α;α;α;α;α. Since the nondeterministic repetition α∗ can repeat program
α any arbitrary number of times, this makes the resulting programs nondeterministic,
because they can run in more than one way.

1There is a very subtle argument why such unrolling is still enough progress to prove properties of loops
[Pla15], but this is beyond the scope here.

15-414 LECTURE NOTES MATT FREDRIKSON

L6.4 Invariants for Arbitrary Loops

In fact, this is a little bit like what happens for while(Q)α loops in practice, too. In
principle, the computations of while(Q)α are deterministic because from every initial
state there is at most one run of this program and this run takes some deterministic
number of loop iterations. But in practice, it’s not like we could easily tell how often
exactly a while(Q)α loop repeats. If we could we would have solved the halting prob-
lem, which Church-Turing thought of as a difficult one. So when we try to understand
a while(Q)α loop, realistically, we would also often have to say that this loop might
repeat any number of times, just because we don’t know any better.

For the sake of better understanding while loops, let’s extend the syntax as follows:2

Definition 2 (Nondeterministic program). Nondeterministic while programs are defined
by extending the grammar of deterministic while programs with one additional case,
highlighted in bold:

α, β ::= x := e | ?Q | if(Q)α elseβ | α;β | while(Q)α | α∗

Of course, as soon as we add a new operator into our syntax, we have to give it a
meaning. The meaning of nondeterministic repetition is quite different from the mean-
ing of all the other deterministic program operators, precisely because its effect is non-
deterministic. But our semantics of programs is already perfectly prepared for that,
because it is a relation [[α]] ⊆ S × S on states. In deterministic programs, at most one
final state is reachable from every initial state. In nondeterministic programs, instead, it
can also happen that multiple states are reachable. The nondeterministic while program
{x := x+ 2}∗ for example will repeatedly increment variable x by 2 for any number of
times. It might increment x by 2 or by 10 or by 0 or by 414 or . . . , but not by 3 be-
cause that’s an odd number. Even if this may sound like a lot of options, it turns out
that the semantics of nondeterministic repetition is actually much easier than that of
while loops, precisely because we do not need to keep track of when exactly it exits on
account of the loop guard Q.

Definition 3 (Transition semantics of nondeterministic while programs). Each nonde-
terministic while program α is interpreted semantically as a binary reachability relation
[[α]] ⊆ S × S over states, defined inductively by extending the definition for determin-
istic while programs with the following case

6. [[α∗]] =
{

(ω, ν) : there are an n and states µ0 = ω, µ1, µ2, . . . , µn = ν such that
(µi, µi+1) ∈ [[α]] for all 0 ≤ i < n}
That is, state µi+1 is reachable from state µi by running α for all i.

Comparing the definition of the semantics, the meaning of nondeterministic repeti-
tion is much easier to define even if it allows more behavior, because all it says is that
the nondeterministic repetition α∗ repeats (and leaves open how often exactly). But
while loops are easy to get back from nondeterministic repetitions and tests, because

2Nondeterministic programs usually include a slightly different set of operators [Pra76, HKT00]. Here
we consider nondeterministic while programs which only involve a minimal change compared to de-
terministic while programs.

15-414 LECTURE NOTES MATT FREDRIKSON

Invariants for Arbitrary Loops L6.5

while loops while(Q)α are equivalent to guarding the loop body of a nondeterministic
repetition by the test ?Q and guarding the loop exit by the test ?¬Q so that no execution
can succeed that stops too early or too late:

while(Q)α ≡ {?Q;α}∗; ?¬Q (1)

This equivalence of while programs with nondeterministic repetitions using suitable
tests gives us confidence that we will later be able to understand while loops if we just
first understand nondeterministic repetition itself.

Remember that the box modality in the formula [α∗]P considers all possible execu-
tions of the nondeterministic repetition α∗. So [α∗]P really says, but more concisely,
that the following infinite collection of formulas is true:

P, [α]P, [α;α]P, [α;α;α]P, [α;α;α;α]P, [α;α;α;α]P, [α;α;α;α;α]P, . . .

5 Induction

Of course it would be very easy to also design and justify an axiom that unwinds a
nondeterministic repetition, just like axioms [unwind] and [unfold] do for while loops:

([∗]) [α∗]P ↔ P ∧ [α][α∗]P

But that axiom also still shares the exact same problem of reducing a property of a
nondeterministic repetition to a logical combination involving the same property of the
same nondeterministic repetition.

There isn’t much that we can do to improve matters in how the iteration axiom [∗]
insists on the postcondition P in the first conjunct, because nondeterministic loops are
allowed to repeat 0 times, which keeps them in the initial state. So unless we show that
the postcondition P is true in the initial state, the property [α∗]P can never be true. But
the second conjunct of axiom [∗] retains the exact same property [α∗]P after [α]. Let’s
develop a new axiom of the form:

[α∗]P ↔ P ∧ . . .

What we definitely need to show in addition to P is that [α]P is true. But since
we already showed that P is true in the first conjunct, it is enough for us to show the
implication P → [α]P . Unfortunately, showing just those two conditions is not enough:

[α∗]P ↔ P ∧ (P → [α]P)

because the second conjunct only says that the implication P → [α]P is true in the
current state, which says nothing about states that are reached after the loop α∗ ran
repeatedly, say, for 10 times. We need to know that the implication P → [α]P also holds
again after the loop ran a bunch more times.

These thoughts lead to the induction axiom for loops [Pla17]:

15-414 LECTURE NOTES MATT FREDRIKSON

L6.6 Invariants for Arbitrary Loops

Lemma 4. The induction axiom I is sound:

(I) [α∗]P ↔ P ∧ [α∗](P → [α]P)

Proof. In order to prove validity, we consider any state ω and show that

ω |= [α∗]P ↔ P ∧ [α∗](P → [α]P)

As usual the proof considers each direction separately.

“→” This direction is easy to see because a nondeterministic repetition α∗ is allowed
to repeat 0 times such that ω |= [α∗]P implies ω |= P . Also if P is true after any
number of repetitions of α∗ then also ω |= [α∗][α]P after at least one iteration. This
implies the right hand side.

“←” This direction is by induction on the number n of loop iterations.

n = 0: The first conjunct implies P holds in the final state, which is the initial state
ω after 0 repetitions.

n+ 1: By induction hypothesis, P is always true after n repetitions from initial state
ω. In order to show that P is also always true after n+ 1 repetitions from ω,
consider any intermediate state µ such that (ω, µ) ∈ [[α∗]] with n iterations
and any final state ν with (µ, ν) ∈ [[α]]. By induction hypothesis, µ |= P .
By the right conjunct of the assumption also µ |= P → [α]P . Consequently,
ν |= P .

6 Proofs of Loops

The induction axiom I is a wonderful equivalence but it still comes with the challenge
of reducing a property of a loop to another property of the same loop. Even if the
other property P → [α]P comes with an assumption to use, it’s still a property of a
loop. But now we can combine the induction axiom I with another important proof
principle: generalization. Gödel’s generalization rule G says that one way of proving a
postcondition of a box modality is to just prove the postcondition itself:

(G)
` P

Γ ` [α]P,∆

Indeed, if P has a proof then it is valid by soundness, so true in all states, hence also
true in all states after running program α. Of course, Gödel’s generalization rule G
cannot soundly keep any information from Γ,∆ for the premise, because it might no
longer be true after α. Using the Gödel rule G after the loop induction axiom I reduces
the proof of [α∗]P to a proof that P is true in the initial state and to a proof that the
implication P → [α]P is valid, so true in all states:

(ind′)
Γ ` P,∆ P ` [α]P

Γ ` [α∗]P,∆

15-414 LECTURE NOTES MATT FREDRIKSON

Invariants for Arbitrary Loops L6.7

This proof rule ind′ says that for proving [α∗]P from assumptions Γ with alternatives
∆ (conclusion) it suffices to prove the postcondition P from assumptions Γ with alter-
natives ∆ (left premise) in addition to proving that the postcondition P is inductive so
[α]P is true in any state where P is true (right premise). Proving that rule ind′ is sound
is easy by deriving it from axiom I and rule G.

Lemma 5. The basic loop induction rule ind′ is a derived rule and, thus, sound:

(ind′)
Γ ` P,∆ P ` [α]P

Γ ` [α∗]P,∆

Proof. Showing that rule ind′ is a derived rule requires us to derive its conclusion in
sequent calculus from its premises, which we derive from axiom I with rule G:

Γ ` P,∆

P ` [α]P
→R ` P → [α]P
G Γ ` [α∗](P → [α]P),∆

∧R Γ ` P ∧ [α∗](P → [α]P),∆
I Γ ` [α∗]P,∆

7 Loop Invariants

Proof rule ind′ properly reduces the proof of a nondeterministic repetition to a proof
of subquestions that do not involve the repetition again. Its only downside is that the
rule no longer comes in the form of an equivalence axiom. And indeed there are cases
where the ind′ rule does not work like it should. How could that happen?

Before you read on, see if you can find the answer for yourself.

15-414 LECTURE NOTES MATT FREDRIKSON

L6.8 Invariants for Arbitrary Loops

Everything that proof rule ind′ proves is valid, after all the rule is sound because it
is derived from sound axioms and proof rules. There are, however, cases where proof
rule ind′ does not prove the conclusion even though it is valid. The problem is very
apparent from how rule ind′ is derived with the help of the G rule which misplaces
a whole [α∗] modality. That might have contained valuable information about what
exactly changes as the loop runs, which is lost when setting out for an isolated proof of
the postcondition.

We can make up for that by retaining a little more information about the long history
of loop body executions by providing a little more information in a loop invariant J
that we choose freely and perform induction with invariant J instead. Of course, we
then also have to prove that the loop invariant J we dreamed up implies the original
postcondition we were interested in (third premise):

(loop)
Γ ` J,∆ J ` [α]J J ` P

Γ ` [α∗]P,∆

This rule can easily be derived from the monotonicity principle that if P implies Q
then if P is always true after running α then Q is also always true after running α:

(M[·])
P ` Q

Γ, [α]P ` [α]Q,∆

Lemma 6. Loop rule loop is a derived rule and thus sound:

(loop)
Γ ` J,∆ J ` [α]J J ` P

Γ ` [α∗]P,∆

Proof. The proof rule loop can be derived from rule ind′ by rule M[·]:

Γ ` J,∆ J ` [α]J
ind′

Γ ` [α∗]J,∆

J ` P
M[·]Γ, [α∗]J ` [α∗]P,∆

cut Γ ` [α∗]P,∆

8 Loop Invariants for While Loops

This is a great answer for nondeterministic repetitions α∗ that repeat α any number
of times but our actual interest was in understanding the while(Q)α loop which says
precisely when to repeat and when to stop according to the loop guard Q. Let’s take
what we learned about repetition by and large from α∗ and apply it back to while loops.

The following version of the loop invariant rule for while(Q)α loops (which we sim-
ply call while) can be derived from the loop rule for nondeterministic repetitions α∗

using the definition of the former using the latter from (1):

(while)
Γ ` J,∆ J,Q ` [α]J J,¬Q ` P

Γ ` [while(Q)α]P,∆

15-414 LECTURE NOTES MATT FREDRIKSON

Invariants for Arbitrary Loops L6.9

The DL sequent calculus consists of the axioms that we have seen already oriented
into the direction that turns properties of complex programs into properties of simpler
programs. It also includes an assignment axiom that takes care of renaming variables
appropriately. In the left most branch, rule while proves that the induction invariant
J is true in the beginning. On the middle branch, rule while proves that the invariant
is true again after executing the loop body α once, if only J was true before executing
the loop body and the loop test Q was true (otherwise the loop doesn’t execute). On
the right branch, rule while proves that the invariant J together with the knowledge
that the loop test Q must have failed for the loop to terminate at all imply the original
postcondition φ.

Proving that this while rule for while loops is a derived proof rule is an excellent
exercise. The rule is also an excellent example how the study of something more general
can provide systematic insights about something more specific.

9 Proving a Loopy Program

Enough theory. Let’s turn to an actual program with a loop that we would like to prove.
Consider the following program:

s := 0;

i := 0;

while (i<x) {

s := s+2*i+1;

i := i+1

}
What does this program do? How can we prove it?
Before you read on, see if you can find the answer for yourself.

15-414 LECTURE NOTES MATT FREDRIKSON

L6.10 Invariants for Arbitrary Loops

([:=]=)
Γ, y = e ` p(y),∆

Γ ` [x := e]p(x),∆
(y new) (=R)

Γ, x = e ` p(e),∆
Γ, x = e ` p(x),∆

(=L)
Γ, x = e, p(e) ` ∆

Γ, x = e, p(x) ` ∆

Figure 1: Some proof rules related to equations

10 Sum Up the Square

Let β be the above while program. We set out to prove the DL formula [β]s = x ∗ x
saying that the program β always computes the square of x in variable s in this section.
For the most part, the proof of DL formula [β]s = x ∗ x is completely canonical. The one
step that is not is, of course, also the most difficult one. The while proof rule expects a
loop invariant J as input. Do you have a good idea?

Let’s proceed very systematically. The most obvious possibility for a loop invariant
J is to choose the postcondition s = x ∗ x because that will then clearly imply the post-
condition since every formula is very good at implying itself. So let’s use the following
abbreviation and loop invariant:

α
def≡ s := s+ 2 ∗ i+ 1; i := i+ 1

J
def≡ s = x ∗ x (2)

After this crucial choice, the rest of the proof steps are entirely systematic:

s = 0, i = 0 ` J J, i < x ` [α]J J,¬(i < x) ` s = x ∗ x
while s = 0, i = 0 ` [while(i < x)α]s = x ∗ x
[:=]= s = 0 ` [i := 0][while(i < x)α]s = x ∗ x
[;] s = 0 ` [i := 0; while(i < x)α]s = x ∗ x

[:=]= ` [s := 0][i := 0; while(i < x)α]s = x ∗ x
[;] ` [s := 0; i := 0; while(i < x)α]s = x ∗ x

Note that this proof cannot directly use axiom [:=] to substitute in the new value 0
for i because it still keeps changing in the loop. Instead rule [:=]= is used from Fig. 1,
which keeps it around as an equational assumption i = 0 in the antecedent instead. For
notational convenience, the above proof uses one optimization where the [:=]= step for
s := 0 keeps using variable s instead of a new variable name y, because the context Γ,∆
is empty and the right hand side of the assignment does not mention s either.

While the proof of the right branch is entirely trivial by rule id with (2), the middle
branch with the induction step poses quite a challenge, because (2) is not true after α
even if it was true before, because the program α changes s while keeping x constant.
So that loop invariant (2) was too naive. Instead, let’s choose a loop invariant that says
the same thing, just about the loop variable i instead of x because the result about the
square of x is only attained in the end with partial progress till i:

J
def≡ s = i ∗ i (3)

15-414 LECTURE NOTES MATT FREDRIKSON

Invariants for Arbitrary Loops L6.11

Thanks to our use of abbreviation J for the loop invariant that change does not change
the structure of the above proof but gives us a new chance of proving its premises. Of
course now the proof of the right premise becomes less trivial since id no longer suffices,
but let’s first worry about the middle branch that gave us so much trouble before.

The—most exciting—middle branch J, i < x ` [α]J can be proved using the usual
decompositions with axioms (inside out for assignments) and the rule =R to replace the
left hand side s of an equation s = i ∗ i with the right hand side i ∗ i:

∗
Z s = i ∗ i, i < x ` i ∗ i+ 2 ∗ i+ 1 = (i+ 1) ∗ (i+ 1)

=R s = i ∗ i, i < x ` s+ 2 ∗ i+ 1 = (i+ 1) ∗ (i+ 1)
[:=]s = i ∗ i, i < x ` [s := s+ 2 ∗ i+ 1](s = (i+ 1) ∗ (i+ 1))
[:=]s = i ∗ i, i < x ` [s := s+ 2 ∗ i+ 1][i := i+ 1](s = i ∗ i)
[;] s = i ∗ i, i < x ` [s := s+ 2 ∗ i+ 1; i := i+ 1](s = i ∗ i)

J, i < x ` [α]J

But as soon as we march on to the right branch J,¬(i < x) ` s = x ∗ x, which is:

s = i ∗ i,¬(i < x) ` s = x ∗ x

we find it impossible to prove, because it simply is not true. What could have gone
wrong?

Of course. The loop invariant (3) was no good either. While it is inductive (the
middle branch proves) it fails to imply the postcondition (the right branch does not).
Contrast this with the loop invariant (2) which implies the postcondition but failed to
be inductive. Neither are any good for proving the original DL formula. But if (3) is
already inductive, then it might merely be missing additional knowledge.

When thinking back about where loop invariants came from (dropping [α∗]) then the
only information that could be missing in a loop invariant is to retain additional infor-
mation about the past iterations that we still need to prove the postcondition. Indeed,
(3) successfully relates the square variable s to the square of the loop variable i but
doesn’t tell us anything about how any of them relate to the input variable x. The loop
guard tells us that i < x holds when the loop body runs and that ¬(i < x) holds when
the loop exits. But it doesn’t tell us that we indeed went about increasing i all the time
until its value equals x. So let’s discard the invariant candidate (3) and move on to:

J
def≡ i ≤ x ∧ s = i ∗ i (4)

Having made that chance of loop invariant, the proof of the middle branch needs to be

15-414 LECTURE NOTES MATT FREDRIKSON

L6.12 Invariants for Arbitrary Loops

adapted as indicated in boldface, but fortunately still proves:

∗
Z i ≤ x, s = i ∗ i, i < x ` (i+ 1 ≤ x ∧ i ∗ i+ 2 ∗ i+ 1 = (i+ 1) ∗ (i+ 1))

=R i ≤ x, s = i ∗ i, i < x ` (i+ 1 ≤ x ∧ s+ 2 ∗ i+ 1 = (i+ 1) ∗ (i+ 1))
∧L i ≤ x ∧ s = i ∗ i, i < x ` (i+ 1 ≤ x ∧ s+ 2 ∗ i+ 1 = (i+ 1) ∗ (i+ 1))
[:=]i ≤ x ∧ s = i ∗ i, i < x ` [s := s+ 2 ∗ i+ 1](i+ 1 ≤ x ∧ s = (i+ 1) ∗ (i+ 1))
[:=]i ≤ x ∧ s = i ∗ i, i < x ` [s := s+ 2 ∗ i+ 1][i := i+ 1](i ≤ x ∧ s = i ∗ i)
[;] i ≤ x ∧ s = i ∗ i, i < x ` [s := s+ 2 ∗ i+ 1; i := i+ 1](i ≤ x ∧ s = i ∗ i)

J, i < x ` [α]J

The right branch J,¬(i < x) ` s = x ∗ x can now be proved easily thanks to (4). The
easiest way is a cut to show that i = x follows by arithmetic from i ≤ x and ¬(i < x):

∗
Zi ≤ x,¬(i < x) ` i = x

∗
ids = i ∗ i, i = x ` s = i ∗ i
=Rs = i ∗ i, i = x ` s = x ∗ x

cut i ≤ x, s = i ∗ i,¬(i < x) ` s = x ∗ x
∧Li ≤ x ∧ s = i ∗ i,¬(i < x) ` s = x ∗ x

J,¬(i < x) ` s = x ∗ x

Finally the only thing that remains to be done is to prove the left branch s = 0, i = 0 ` J
(again there is a simple branch with trivial arithmetic on 0 = 0 ∗ 0):

s = 0, i = 0 ` 0 ≤ x
∗

Z. . . ` 0 = 0 ∗ 0
∧R s = 0, i = 0 ` 0 ≤ x ∧ 0 = 0 ∗ 0
=R s = 0, i = 0 ` i ≤ x ∧ s = i ∗ i

s = 0, i = 0 ` J

Wait a second. We cannot prove that property. Shocking! What’s wrong? Probably yet
another mistake in the choice of the loop invariant J from (4). How could we change
it?

It is quite crucial to realize that whatever we do to try and find another loop invariant,
it won’t succeed, simply because the formula [β] s = x ∗ x we were trying to prove is
not valid. In fact the above proof attempt already points out what we’re missing. We
simply do not know if 0 ≤ x is true in the beginning, but that is actually good news
because the original DL formula is not even valid for negative x, so it cannot have a
(sound) proof.

Obviously, all we need to do to get a proof now is to assume the precondition x ≥ 0
in the beginning to obtain a provable DL formula and preserve this knowledge in the
appropriate places of the proof:

x ≥ 0→ [s := 0; i := 0; while(i < x) {s := s+ 2 ∗ i+ 1; i := i+ 1}] s = x ∗ x

15-414 LECTURE NOTES MATT FREDRIKSON

Invariants for Arbitrary Loops L6.13

References

[HKT00] David Harel, Dexter Kozen, and Jerzy Tiuryn. Dynamic Logic. MIT Press,
2000.

[Pla15] André Platzer. Differential game logic. ACM Trans. Comput. Log., 17(1):1:1–
1:51, 2015. doi:10.1145/2817824.

[Pla17] André Platzer. Logical Foundations of Cyber-Physical Systems. Springer, Switzer-
land, 2017. URL: http://www.springer.com/978-3-319-63587-3.

[Pra76] Vaughan R. Pratt. Semantical considerations on Floyd-Hoare logic. pages
109–121, 1976.

15-414 LECTURE NOTES MATT FREDRIKSON

http://dx.doi.org/10.1145/2817824
http://www.springer.com/978-3-319-63587-3

	Introduction
	Derived Soundness
	Recall: Loop the Loop
	Loops and Nondeterministic Repetition
	Induction
	Proofs of Loops
	Loop Invariants
	Loop Invariants for While Loops
	Proving a Loopy Program
	Sum Up the Square

