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1 Introduction

In the previous lecture we studied the Nelson-Oppera procedure and the DPLL(T)
framework that allows us to build decision procedures for formulas that use multiple
theories. In this lecture, we will take a closer look to the theory of equality with uninter-
preted functions and show how it can be used to abstract complex functions that may
be hard to verify. As a real-world example, we will show how the theory of equality
with uninterpreted functions can be used to prove equivalence of programs and how to
use SMT solvers. Finally, we will present a decision procedure for the theory of equality
with uninterpreted functions based on congruence closure.1

2 Preliminaries

We start by reviewing the signature and axioms of the theory of equality with uninter-
preted functions.

ΣE : {=, a, b, c, . . . , f, g, h, . . . , p, q, r, . . .}

consists of

• = (equality), a binary predicate;

• and all constant, function and predicate symbols.

The axioms of TE are the following:

1This lecture was written by Ruben Martins, who adapted content from [BM07] and [KS16]

http://www.cs.cmu.edu/~15414/index.html
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1. ∀x.x = x (reflexivity)

2. ∀x, y.x = y → y = x (symmetry)

3. ∀x, y, z.x = y ∧ y = z → x = z (transitivity)

4. ∀x̄, ȳ.(
∧n

i=1 xi = yi)→ f(x̄) = f(ȳ) (congruence)

5. ∀x̄, ȳ.(
∧n

i=1 xi = yi)→ (p(x̄)↔ p(ȳ)) (equivalence)

Consider the Σ-formula ϕ

f(f(f(a))) = a ∧ f(f(f(f(f(a))))) = a ∧ f(a) 6= a

ϕ is TE-unsatisfiable. We can make the following intuitive argument: substituting a
for f(f(f(a))) in f(f(f(f(f(a))))) = a by the first equality yields f(f(a)) = a; substi-
tuting a for f(f(a)) in f(f(f(a))) = a according to this new equality yields f(a) = a,
contradicting the literal f(a) 6= a. More formally, we can apply the axioms of TE and
derive the same contradiction:

1. f(f(f(f(a)))) = f(a) first literal of ϕ (congruence)

2. f(f(f(f(f(f(a)))))) = f(f(a)) step 1 (congruence)

3. f(f(a)) = f(f(f(f(f(f(a)))))) step 2 (symmetry)

4. f(f(a)) = a step 3 and second literal of ϕ (transitivity)

Note that even though we have the equivalence axiom, we can transform an instance
of this axiom to an instance of the congruence axiom. This transformation allows us to
disregard the equivalence axiom. For example, given Σ-formula:

x = y → (p(x)↔ p(y))

introduce a fresh constant c and a fresh function fp, and write

x = y → ((fp(x) = c))↔ (fp(y) = c))

In the rest of this lecture, we will consider Σ-formulae without predicates other than
=.

3 Proving equivalence of programs

Replacing functions with uninterpreted functions in a given formula is a common tech-
nique for making it easier to reason about (e.g., to prove its validity) At the same time,
this process makes the formula weaker which means that it can make a valid formula in-
valid. This observation is summarized in the following relation, where ϕUF is derived
from a formula ϕ by replacing some or all of its functions with uninterpreted functions:
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1 i n t power3 ( i n t in )
2 {
3 i n t i , out a ;
4 out a = in ;
5 f o r ( i = 0 ; i < 2 ; i ++)
6 out a = out a ∗ in ;
7 re turn out a ;
8 }

(a)

1 i n t power3 new ( i n t in )
2 {
3 i n t out b ;
4

5 out b = ( in ∗ in ) ∗ in ;
6

7 re turn out b ;
8 }

(b)

Figure 1: Two C functions. We can simplify the proof of their equivalence by replacing
the multiplication operator by an uninterpreted function.

|= ϕUF → ϕ

Uninterpreted functions are widely used in calculus and other branches of mathe-
matics, but in the context of reasoning and verification, they are mainly used for sim-
plifying proofs. Under certain conditions, uninterpreted functions let us reason about
systems while ignoring the semantics of all functions, assuming they are not necessary
for the proof.

Assume that we have a method for checking the validity of a Σ-formula in TE. 2

Relying on this assumption, the basic scheme for using uninterpreted functions is the
following:

1. Let ϕ denote a formula of interest that has interpreted functions. Assume that a
validity check of ϕ is too hard (computationally), or even impossible.

2. Assign an uninterpreted function to each interpreted function in ϕ. Substitute
each function in ϕ with the uninterpreted function to which it is mapped. Denote
the new formula by ϕUF .

3. Check the validity of ϕUF . If it is valid then ϕ is valid. Otherwise, we do not
know anything about the validity of ϕ.

As a motivating example consider the problem of proving the equivalence of two C
functions shown in Figure 1. In general, proving the equivalence of two programs is
undecidable, which means there is no sound and complete to prove such an equiva-
lence. However, in this case equivalence can be decided since the program does not
have unbounded memory usage. A key observation about these programs is that they
have only bounded loops, and therefore it is possible to compute their input/output
relations. The derivation of these relations from these two programs can be as follows:

1. Remove the variable declarations and “return statements”.
2Later in this lecture we will show how to check the validity of a Σ-formula in TE with congruence

closure.
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out0 a =in0 a ∧
out1 a =out0 a ∗ in0 a ∧
out2 a =out1 a ∗ in0 a

(a) (ϕa)

out0 b =(in0 b ∗ in0 b) ∗ in0 b

(b) (ϕa)

Figure 2: Two formulas corresponding to the programs (a) and (b) in Figure 1.

2. Unroll the for loop.

3. Replace the left-hand side variable in each assignment with a new auxiliary vari-
able.

4. Whenever a variable is read, replace it with the auxiliary variable that replaced it
in the last place where it was assigned.

5. Conjoin all program statements.

These operations result in the two formulas ϕa and ϕb which are shown in Figure 2.
This procedure to transform code into a first-order formula is known as static single
assignment (SSA). A generalization of this form to programs with “if” branches and
other constructs will be further explored in future lectures when discussing bounded
model checking. For this lecture, we apply a limited form of SSA to illustrate how
uninterpreted functions can be used to abstract the multiplication operator.

To show that these programs are equivalent with respect to their input-outputs, we
must show that the following formula Φ is valid:

in0 a = in0 b ∧ ϕa ∧ ϕb → out2 a = out0 b

Showing the validity of Φ is equivalent to show the unsatisfiability of ¬Φ. We can
show that ¬Φ is unsatisfiable by using SMT solvers.

4 Using SMT solvers

SMT solvers take as input a formula in a standardize format (SMT2-Lib format). A
detailed description of the SMT2-Lib format is available at:

http://smtlib.cs.uiowa.edu

SMT solvers support a variety of theories, namely: the theory of arrays with exten-
sionality, the theory of bit vectors with arbitrary size, the core theory defining the basic
Boolean operators, the theory of floating point numbers, the theory of integer number
and the theory of reals. 3

3Further details on each theory are available at http://smtlib.cs.uiowa.edu/theories.shtml.
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1 (declare -fun out0_a () (Int))

2 (declare -fun out1_a () (Int))

3 (declare -fun in0_a () (Int))

4 (declare -fun out2_a () (Int))

5 (declare -fun out0_b () (Int))

6 (declare -fun in0_b () (Int))

7 (define -fun phi_a () Bool

8 (and (= out0_a in0_a) ; out0_a = in0_a

9 (and (= out1_a (* out0_a in0_a)) ; out1_a = out0_a * in0_a

10 (= out2_a (* out1_a in0_a))))) ; out2_a = out1_a * in0_a

11 (define -fun phi_b () Bool

12 (= out0_b (* (* in0_b in0_b) in0_b))) ; out0_b = in0_b * in0_b *

in0_b

13 (define -fun phi_input () Bool

14 (= in0_a in0_b))

15 (define -fun phi_output () Bool

16 (= out2_a out0_b))

17 (assert (not (=> (and phi_input phi_a phi_b) phi_output)))

18 (check -sat)

Figure 3: SMT encoding of Φ using mathematical integers to model integers.

If you want to try SMT solving, we recommend doing the z3 tutorial at:

https://rise4fun.com/z3/tutorial

and trying z3 online at:

https://rise4fun.com/z3/

Before using SMT solvers to show that ¬Φ is unsatisfiable, we must decide how we
will model integers since this will restrict the underlying theories used by the SMT
solver.

4.1 Modeling integers as mathematical integers

If we model integers as mathematical integer than the SMT solver will use the theory
of integers and will be able to show that both programs are equivalent. Figure 3 shows
the SMT encoding of Φ when using integers: You can try this encoding online at:

https://rise4fun.com/Z3/BLQpl

However, integers are not represented as mathematical integers in C. If we want to
model integers as the ones being used in C then we should model them using bit vectors
(of size 32 or 64).
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1 (declare -fun out0_a () (_ BitVec 512))

2 (declare -fun out1_a () (_ BitVec 512))

3 (declare -fun in0_a () (_ BitVec 512))

4 (declare -fun out2_a () (_ BitVec 512))

5 (declare -fun out0_b () (_ BitVec 512))

6 (declare -fun in0_b () (_ BitVec 512))

7 (define -fun phi_a () Bool

8 (and (= out0_a in0_a) ; out0_a = in0_a

9 (and (= out1_a (bvmul out0_a in0_a)) ; out1_a = out0_a * in0_a

10 (= out2_a (bvmul out1_a in0_a))))) ; out2_a = out1_a * in0_a

11 (define -fun phi_b () Bool

12 (= out0_b (bvmul (bvmul in0_b in0_b) in0_b))) ; out0_b = in0_b *

in0_b * in0_b

13 (define -fun phi_input () Bool

14 (= in0_a in0_b))

15 (define -fun phi_output () Bool

16 (= out2_a out0_b))

17 (assert (not (=> (and phi_input phi_a phi_b) phi_output)))

18 (check -sat)

Figure 4: SMT encoding of Φ using bit vectors to model integers.

4.2 Modeling integers as bit vectors

Modeling integers as bit vectors as the advantage of capturing the C model and be-
ing able to detect potential overflows. However, using the bit vector theory is not as
efficient as using the theory of integers. In particular, assume we want to show that
the programs are equivalent for a bit width of 512. The SMT encoding when using bit
vectors is shown in the Figure 5. You can try this encoding online at:

https://rise4fun.com/Z3/ibsw3

This formula is much more challenging to be solved than the previous one and will
become harder as the bit with increases. For example, if you try it online you will get
an out of memory error. You can also try it in your own computer (since you should
have z3 installed) by running the following command:

$ z3 -smt2 formula

where formula is a file with the contents of Figure 5. The reason for the memory blowup
is the multiplication operator when using bit vectors. Can we avoid this issue alto-
gether? What if we consider the multiplication operator as an uninterpreted function?

4.3 Using uninterpreted functions

If we consider an uninterpreted function f that takes as input two bit vectors and re-
turns a bit vector than we can replace the bit vector multiplication operator (bvmul) by
f . If we are able to prove that this formula is unsatisfiable, then we can conclude that
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1 (declare -fun out0_a () (_ BitVec 512))

2 (declare -fun out1_a () (_ BitVec 512))

3 (declare -fun in0_a () (_ BitVec 512))

4 (declare -fun out2_a () (_ BitVec 512))

5 (declare -fun out0_b () (_ BitVec 512))

6 (declare -fun in0_b () (_ BitVec 512))

7 (declare -fun f ((_ BitVec 512) (_ BitVec 512)) (_ BitVec 512))

8 (define -fun phi_a () Bool

9 (and (= out0_a in0_a) ; out0_a = in0_a

10 (and (= out1_a (f out0_a in0_a)) ; out1_a = out0_a * in0_a

11 (= out2_a (f out1_a in0_a))))) ; out2_a = out1_a * in0_a

12 (define -fun phi_b () Bool

13 (= out0_b (f (f in0_b in0_b) in0_b))) ; out0_b = in0_b * in0_b *

in0_b

14 (define -fun phi_input () Bool

15 (= in0_a in0_b))

16 (define -fun phi_output () Bool

17 (= out2_a out0_b))

18 (assert (not (=> (and phi_input phi_a phi_b) phi_output)))

19 (check -sat)

Figure 5: SMT encoding of Φ using an uninterpreted function for multiplication.

the original formula is also unsatisfiable and we are able to show the equivalence be-
tween the two programs when representing integers by bit vectors of width 512. This
formula is much easier to be solved than the one using bit vector multiplication since
we abstracted the multiplication function and the SMT solver will not need to reason
about what f does but only that it is a function. You can try this encoding online at:

https://rise4fun.com/Z3/V7Sf

But how can we show the satisfiability of a formula with equality and uninterpreted
functions? In the next section, we will show a procedure based on congruence closure
to determine the satisfiability of a formula with equality and uninterpreted functions.

5 Congruence closure

Each positive positive literal s = t of a Σ-formula ϕ over TE asserts an equality between
two terms s and t. Applying the axioms of TE produces more equalities over terms that
occur in ϕ. Since there are only a finite number of terms in ϕ, only a finite number
of equalities among these terms are possible. Hence, one of two situations eventually
occurs: either some equality is formed that directly contradicts a negative literal s′ 6=
t′ of ϕ; or the propagation of equalities ends without finding a contradiction. These
cases correspond to TE-unsatisfiability and TE-satisfiability, respectively, of ϕ. In this
section, we will formally describe this procedure as forming the congruence closure of
the equality relation over terms asserted by ϕ.
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Definition 1 (Equivalence relation). A binary relation R over a set S is an equivalence
relation if:

1. Reflexive: ∀s ∈ S.sRs;

2. Symmetric: ∀s1,s2 ∈ S.s1Rs2 → s2Rs1;

3. Transitive: ∀s1,s2,s3 ∈ S.s1Rs2 ∧ s2Rs3 → s1Rs3.

For example, the relation = is an equivalence relation over real numbers and≡2 is an
equivalence relation over Z.

Definition 2 (Congruence relation). Consider a set S equipped with functions F =
{f1, . . . , fn}. A relation R over S is a congruence relation if it is an equivalence relation
and for every n-ary function f ∈ F :

∀s̄,t̄
n∧

i=1

siRti → f(s̄)Rf(t̄)

Definition 3 (Equivalence and congruence classes). For a given equivalence relation
over S, every member of S belongs to an equivalence class. The equivalence class of
s ∈ S under R is the set:

[s]R
def
= {s′ ∈ S : sRs′}

If R is a congruence relation then this set is called a congruence class.

For example, the equivalence class of 1 under≡2 are the odd numbers and the equiv-
alence class f 6 under ≡3 the multiples of 3.

Definition 4 (Equivalence closure). The equivalence closure RE of the binary relation
R over S is the equivalence relation such that:

• R ⊆ RE ;

• for all other equivalence relations R′ s.t. R ⊆ R′, RE ⊆ R′.

Thus, RE is the smallest equivalence relation that includes R.

Let S = {a, b, c, d} and R = {aRb, bRc, dRd} then

• aRb, bRc, dRd ∈ RE since R ⊆ RE ;

• aRa, bRb, cRc ∈ RE by reflexivity;

• bRa, cRb ∈ RE by symmetry;

• aRc ∈ RE by transitivity;

• cRa ∈ RE by symmetry;
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Hence,

RE = {aRb, bRa, aRz, bRb, bRc, cRb, cRc, aRc, cRa, dRd}.

Definition 5 (Subterm set). The subterm set Sϕ of Σ-formula ϕ is the set that contains
precisely the subterms of ϕ.

For example, the subterm set of ϕ:

ϕ : f(a, b) = a ∧ f(f(a, b), b) 6= a

is

Sϕ = {a, b, f(a, b), f(f(a, b), b)}.

Now we relate the congruence closure of a Σ-formula’s subterm set with its TE-
satisfiability. Given Σ-formula ϕ

ϕ : s1 = t1 ∧ . . . ∧ sm = tm ∧ sm+1 6= tm+1 ∧ . . . ∧ sn 6= tn

with subterm set Sϕ, ϕ is TE-satisfiable iff there exists a congruence relation ∼ over
Sϕ such that

• for each i ∈ {1, . . . ,m}, si ∼ ti;

• for each i ∈ {m + 1, . . . , n}, si 6∼ ti.

The goal of the congruence closure algorithm is to construct the congruence relation
of a formula’s subterm set, or to prove that no congruence relation exists. The algorithm
performs the following steps:

1. Construct the congruence closure ∼ of

{s1 = t1, . . . , sm = tm}

over the subterm set Sϕ. Then

∼|= s1 = t1 ∧ . . . ∧ sm = tm

2. If si ∼ ti for any i ∈ {m + 1, . . . , n} then ϕ is unsatisfiable;

3. Otherwise, ∼|= ϕ and ϕ is satisfiable.

How do we actually construct the congruence closure in Step 1? Initially, begin with
the finest congruence relation ∼0 given by the partition

{{s} : s ∈ Sϕ}

in which each term of Sϕ is its own congruence class. Then, for each i ∈ {1, . . . ,m},
impose si = ti by merging the congruence classes
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[si] ∼i−1 and [ti] ∼i−1

to form a new congruence relation ∼i. To accomplish this merging, first form the
union of [si] ∼i−1 and [ti] ∼i−1. Then propagate any new congruence that arise within
this union.

Consider the Σ-formula ϕ

ϕ : f(a, b) = a ∧ f(f(a, b), b) 6= a

Construct the following initial partition by letting each member of the subterm set
Sϕ be its own class:

{{a}, {b}, {f(a, b)}, {f(f(a, b), b)}}.

According to the first literal f(a, b) = a, merge

{f(a, b), {a}}

to form partition
{{a, f(a, b)}, {b}, {f(f(a, b), b)}}.

According to the congruence axiom,

f(a, b) ∼ a, b ∼ b implies f(f(a, b), b) ∼ f(a, b),

resulting in the new partition

{{a, f(a, b), f(f(a, b), b)}, {b}}.

This partition represents the congruence closure of Sϕ. Now, it is the case that

{{a, f(a, b), f(f(a, b), b)}, {b}} |= ϕ ?

No! Since f(f(a, b), b) ∼ a but ϕ asserts that f(f(a, b), b) 6= a. Therefore, ϕ is TE-
unsatisfiable.

15-414 LECTURE NOTES MATT FREDRIKSON



Real-world SMT L15.11

6 Summary

• Uninterpreted functions can be used to simplify proofs by replacing (complex)
interpreted functions by uninterpreted functions;

• Let ϕUF be ϕ with all its interpreted functions replaced by uninterpreted func-
tions. Then:

|= ϕUF → ϕ

• We can use SMT solvers to check if two programs are equivalent:

– If we represent integers as mathematical integers than the problem is rela-
tively easy to be solved;

– If we represent integers as bit vectors than the problem becomes more chal-
lenging because of bit vector multiplication;

– If we abstract bit vector multiplication with uninterpreted functions than we
can achieve scalability and prove that two programs are equivalent for any
bit width.

• Congruence closure can be use to check the satisfiability of a formula with equal-
ity and uninterpreted functions.
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