
15-451/651: Design & Analysis of Algorithms November 29, 2016
Lecture #24 last changed: November 30, 2016

Last time we looked at algorithms for finding approximately-optimal solutions for NP-hard prob-
lems. Today we’ll be looking at finding approximately-optimal solutions for problems where the
difficulty is not that the problem is necessarily computationally hard but rather that the algorithm
doesn’t have all the information it needs to solve the problem up front.

Specifically, we will be looking at online algorithms, which are algorithms for settings where inputs
or data is arriving over time, and we need to make decisions on the fly, without knowing what
will happen in the future. This is as opposed to standard problems like sorting where you have
all inputs at the start. Data structures are one example of online algorithms (they need to handle
sequences of requests, and to do well without knowing in advance which requests will be arriving
in the future). We’ll talk about some other kinds of examples today.

1 Rent or buy?

Here is a simple online problem that captures a common issue in online decision-making, called the
rent-or-buy problem. Say you are just starting to go skiing. You can either rent skis for $50 or buy
them for $500. You don’t know if you’ll enjoy skiing, so you decide to rent. Then you decide to go
again, and again, and after a while you realize you have shelled out a lot of money renting and you
wish you had bought right at the start.1 The optimal strategy is: if you know you’re going to end
up skiing more than 10 times, you should buy right at the beginning. If you know you’re going to
go fewer than 10 times, you should just always rent. (If you know you’re going to go exactly 10
then either way is equally good.) But, what if you don’t know?

To talk about the quality of an online algorithm, we will look at what’s called its competitive ratio:

Definition 1 The competitive ratio of an online algorithm ALG is the worst case (i.e., maximum)
over possible futures σ of the ratio:

ALG(σ)

OPT (σ)
,

where ALG(σ) represents the cost of ALG on σ and OPT (σ) is the least possible cost on σ.

E.g., what is competitive ratio of the algorithm that says “buy right away”? The worst case is we
only go skiing once. Here the ratio is 500/50 = 10.

What about the algorithm that says “Rent forever”? Now the worst case is that we keep going
skiing. So the competitive ratio of this algorithm is unbounded.

Here’s a nice strategy: rent until you realize you should have bought, then buy. (In our case: rent
9 times, then buy). Let’s call this algorithm better-late-than-never. Formally, if the rental cost is r
and the purchase cost is p then the algorithm is to rent dp/re − 1 times and then buy.

Theorem 2 The algorithm better-late-than-never has competitive ratio ≤ 2. If the purchase cost
p is an integer multiple of the rental cost r, then the competitive ratio is 2− r/p.

Proof: We consider two cases. Case 1: if you went skiing fewer than dp/re times (e.g., 9 or fewer
times in the case of p = 500, r = 50) then you are optimal. The algorithm never purchased and

1We are ignoring practical issues such as the type of ski you want depending on your ability level, etc.

1

OPT doesn’t purchase either. Case 2: If you went skiing dp/re or more times, then the optimal
solution would have been to buy at the start, so OPT = p. The algorithm paid r(dp/re − 1) + p
(e.g., $450 + $500 in our specific case). This is always less than 2p, and equals 2p − r if p is a
multiple of r. In Case 1, the ratio of the algorithm’s cost to OPT was 1, and in Case 2, the ratio
of the algorithm’s cost to OPT was less than 2 ((2p− r)/p = 2− r/p if p was a multiple of r). The
worst of these is Case 2, and gives the claimed competitive ratio. �

Theorem 3 Algorithm better-late-than-never has the best possible competitive ratio for the ski-
rental problem for deterministic algorithms when p is a multiple of r.

Proof: Consider the event that the day you purchase is the last day you go skiing (this is a
legitimate event, since (a) if the algorithm never purchases, we already know its competitive ratio
is unbounded, so we may assume a purchase occurs, and (b) the algorithm is deterministic so this
occurs after some specific number of rentals). Now, if you rent longer than better-late-than-never,
then the numerator in Case 2 goes up (the algorithm’s cost is larger) but the denominator stays
the same, so your ratio is strictly worse. If you rent fewer times (say you rent k fewer times than
better-late-than-never for some k ≥ 1), then the numerator in Case 1 goes down by kr but so does
the denominator, so again the ratio is worse. �

2 The elevator problem

You go up to the elevator and press the button. But who knows how long it’s going to take to
come, if ever? How long should you wait until you give up and take the stairs?

Say it takes time E to get to your floor by elevator (once it comes) and it takes time S by stairs.
E.g, maybe E = 15 sec, and S = 45 sec. How long should you wait until you give up? What
strategy has the best competitive ratio?

Answer: wait 30 sec, then take the stairs (in general, wait for S−E time). This is exactly the better-
late-than-never strategy since we are taking the stairs once we realize we should have taken them
at the start. If elevator comes in less than 30 sec, we’re optimal. Otherwise, OPT = 45. We took
30+45 sec, so the ratio is (30 + 45)/45 = 5/3. Or, in general, the ratio is (S−E+S)/S = 2−E/S.

You may have noticed this is really the same as rent-or-buy where stairs=buy, waiting for E time
steps is like renting, and the elevator arriving is like the last time you ever ski. So, this algorithm
is optimal for the same reason. Other problems like this: whether it’s worth optimizing code, when
your laptop should stop spinning the disk between accesses, and many others.

When E � S, this is very close to being 2-competitive. As you saw in HW#4, you can do better
by randomization. Indeed, even in the case where E � S, you can get close to e

e−1 -competitiveness
using the zero-sum game approach from the problem of waiting for the bus.

3 An aside

Interesting article in NYT Sept 29, 2007: Talking about a book by Jason Zweig on how people’s
emotions affect their investing, called “Your money and your brain”:

“There is a story in the book about Harry Markowitz, Mr. Zweig said the other day. He
was referring to the renowned economist who shared a Nobel for helping found modern
portfolio theory and proving the importance of diversification.... Mr. Markowitz was
then working at the RAND Corporation and trying to figure out how to allocate his

2

retirement account. He knew what he should do: I should have computed the historical
co-variances of the asset classes and drawn an efficient frontier. (That’s efficient-market
talk for draining as much risk as possible out of his portfolio.)

But, he said, I visualized my grief if the stock market went way up and I wasn’t in it or if
it went way down and I was completely in it. So I split my contributions 50/50 between
stocks and bonds. As Mr. Zweig notes dryly, Mr. Markowitz had proved incapable of
applying his breakthrough theory to his own money.”

So, he wasn’t applying his own theory but he was using competitive analysis: 50/50 guarantees
you end up with at least half as much as if you had known in advance what would happen, which
is best possible Competitive Ratio you can achieve.

4 List Update

This is a nice problem that illustrates some of the ideas one can use to analyze online algorithms.
Here are the ground rules for the problem:

• There’s a list of n items. (For simplicity we fix n). The positions in the list are numbered
1, 2, . . . , n. Position 1 is the front of the list. The initial ordering of the items in the list is
the same for any algorithm.

• An item x can be accessed. The operation is called Access(x). The cost of the operation is
the position i of x in the list.

• After doing an access, the algorithm is allowed to rearrange the list by doing swaps of adjacent
elements. The cost of a swap is 1.

So an on-line algorithm is specified by describing which swaps are done after an element is accessed.
(Without loss of generality we can give off-line optimum algorithm the power to do its sawps any
time it wants, and not associate them with any particular access.)

The goal is to devise and analyze an on-line algorithm for doing all the accesses Access(σ1),
Access(σ2), Access(σ3), . . . with a small competitive factor.

Here are several algorithms to consider.

• Do Nothing: Don’t reorder the list.

• Single Exchange: After accessing x, if x is not at the front of the list, swap it with its
neighbor toward the front.

• Frequency Count: Maintain a frequency of access for each item. Keep the list ordered by
non-increasing frequency from front to back.

• Move To Front (MTF): After an access to an element x, do a series of swaps to move x
to the front of the list.

It’s easy to construct sample sequences to show that Do Nothing, Single Exchange and Frequency
Count have competitive factors that are Ω(n).

Theorem 4 MTF is a 4-competitive algorithm for the list-update problem.

3

Proof: We’ll use the potential function method. There will be a potential function that depends
on the state of the MTF algorithm and the state of the “opponent” algorithm B, which can be any
algorithm, even one which can see the future. Using this potential, we’ll show that the amortized
cost to MTF of an access is at most 4 times the cost of that access to B.

What is the potential function Φ? Define

Φt = 2 · (The number of inversions between B’s list and MTF’s list at time t)

Recall that an inversion is a pair of distinct elements (x, y) that appear in one order in B’s list and
in a different order in MTF’s list. It’s a measure of the similarity of the lists.

We can first analyze the amortized cost to MTF of Access(x) (where it pays for the list traversal
and its swaps, but B only does its access). Then we separately analyze the amortized cost to MTF
that is incurred when B does any swaps. (Note that in the latter case MTF incurs zero cost, but
it will have a non-zero amortized cost, since the potential function may change. To be complete
the analysis must take this into account.). In each case we’ll show that the amortized cost to MTF
(which is the actual cost, plus the increase in the potential) is at most 4 times the cost to B.

For any particular step, let CMTF and CB be the actual costs of MTF and B on this step, and
ACMTF = CMTF + ∆Φ be the amortized cost. Here ∆Φ = Φnew−Φold is the increase in Φ. Hence
observe that ∆Φ may be negative, and the amortized cost may be less than the actual cost. We
want to show that

ACMTF ≤ 4 · CB

We can then sum the amortized costs, which would equal the actual cost of the entire sequence
of accesses to MTF plus the final potential (non-negative) minus the initial potential (zero). This
would be the four times total cost of B, which would give the result.

Analysis of Access(x). First look at what happens when MTS accesses x and brings it to the
front of its list. Say the picture looks like this:

B |_____x_______|

MTF |_________x___|

Look at the elements that lie before x in MTF’s list, and partition them as follows:

S = {y | y is before x in MTF and y is before x in B}
T = {y | y is before x in MTF and y is after x in B}

What is the cost of the access to MTF in terms of these sets?

CMTF = 1 + |S|+ |T |︸ ︷︷ ︸
find cost

+ |S|+ |T |︸ ︷︷ ︸
swap cost

= 1 + 2(|S|+ |T |).

On the other hand, since all of S lies before x in B, the cost of the algorithm B is at least

CB ≥ |S|+ 1.

What happens to the potential as a result of this operation? Well, here’s MTF after the operation:

4

MTF |x____________|

The only changes in the inversions involve element x, because all other pairs stay in the same
relative order. Hence, for every element of S the the number of inversions increases by 1, and for
every element of T the number of inversions decreases by 1. Hence the increase in Φ is precisely:

∆(Φ) = 2× (|S| − |T |)

Now the amortized cost is

ACMTF = CMTF + ∆(Φ) = 2(|S| − |T |) + 1 + 2(|S|+ |T |)
= 1 + 4|S| ≤ 4(1 + |S|) ≤ 4CB

This completes the amortized analysis of Access(x).

Analysis of B swapping. Now we perform all the swaps that B does. We do the analysis one
swap at a time. For each such swap, observe that CMTF = 0 and CB = 1. Moreover, ∆(Φ) ≤ 2,
since the swap may introduce at most one new inversion. Hence,

ACMTF ≤ 2CB ≤ 4CB

Putting the parts together. Summing the amortized costs we get:

Total Cost to MTF + Φfinal − Φinit ≤ 4(Total Cost to B)

But Φinit = 0, since we start off with the same list as B. And Φfinal ≥ 0. Hence Φfinal−Φinit ≥ 0.
Hence,

Total Cost to MTF ≤ 4× (Total Cost to B).

Hence the MTF algorithm is 4-competitive. �

5 Paging

In paging, we have a disk with N pages, and fast memory with space for k < N pages. When a
memory request is made, if the page isn’t in the fast memory, we have a page fault. We then need
to bring the page into the fast memory and throw something else out if our space is full. Our goal
is to minimize the number of misses. The algorithmic question is: what should we throw out? E.g.,
say k = 3 and the request sequence is 1,2,3,2,4,3,4,1,2,3,4. What would be the right thing to do in
this case if we knew the future? Answer: throw out the thing whose next request is farthest in the
future.

A standard online algorithm is LRU: “throw out the least recently used page”. E.g., what would
it do on above case? What’s a bad case for LRU? 1,2,3,4,1,2,3,4,1,2,3,4... Notice that in this case,
the algorithm makes a page fault every time and yet if we knew the future we could have thrown
out a page whose next request was 3 time steps ahead. More generally, this type of example shows
that the competitive ratio of LRU is at least k. In fact, you can show this is actually the worst-case
for LRU, so the competitive ratio of LRU is exactly k (it’s not hard to show but we won’t prove it
here).

In fact, it’s not hard to show that you can’t do better than a competitive ratio of k with a
deterministic algorithm: you just set N = k + 1 and consider a request sequence that always

5

requests whichever page the algorithm doesn’t have in its fast memory. By design, this will cause
the algorithm to have a page fault every time. However, if we knew the future, every time we had
a page fault we could always throw out the item whose next request is farthest in the future. Since
there are k pages in our fast memory, for one of them, this next request has to be at least k time
steps in the future, and since N = k + 1, this means we won’t have a page fault for at least k − 1
more steps (until that one is requested). So, the algorithm that knows the future has a page fault
at most once every k steps, and the ratio is k.

Here is a neat randomized algorithm with a competitive ratio of O(log k).

Marking Algorithm:

• The initial state is pages 1, . . . , k in fast memory. Start with all pages unmarked.

• When a page is requested,

– if it’s in fast memory already, mark it.

– if it’s not, then throw out a random unmarked page. (If all pages in fast memory
are marked, unmark everything first. For analysis purposes, call this the end of a
“phase”). Then bring in the page and mark it.

We can think of this as a 1-bit randomized LRU, where marks represent “recently used” vs “not
recently used”.

The figure below illustrates a phase of the algorithm for N = 5, k = 4. Each page (shown as a
box) contains the probability that that page is in fast memory. A blue dot indicates that that page
is marked. The column on the left shows requested page, and the column on the right shows the
expected cost of that access. The phase is comprised of accesses to k distinct pages. (Access to
pages that have probability 0 of incurring a page fault are not shown.) At the end of the phase, all
marks are erased, and the next phase begins.

O
ne

N
ot

e
O

nl
in

e
ht

tp
s:/

/o
ne

no
te

.o
ffi

ce
ap

ps
.li

ve
.c

om
/o

/o
ne

no
te

fra
m

e.
as

px
?F

i=
SD

...

1
of

 1
11

/3
0/

16
, 1

1:
47

 A
M

6

Theorem 5 When the marking algorithm is run on a sequence σ of accesses, we have:

E[MARKING(σ)]

OPT(σ)
≤
{
Hk if N = k + 1
2Hk if N > k + 1

Note that Hk = 1 + 1/2 + . . .+ 1/k is the kth harmonic number. And Hk ≤ 1 + ln k.

Proof: We will show the proof for the special case of N = k + 1. For general N , the proof follows
similar lines but just is a bit more complicated.

First off all, observe that the expected cost of a phase to the marking algorithm is Hk. This should
be clear from the figure above. We will now show that the cost of the first m phases for OPT is at
least m. This will complete the proof.

We will do this by analyzing the cost of OPT for a phase depending on whenther OPT’s state is
equal to MARKING’s state at the beginning or at the end of a phase.

 W
ed

ne
sd
ay
,)N

ov
em

be
r)3

0,
)2
01
6

12
:0
8)
PM

O
ne

N
ot

e
O

nl
in

e
ht

tp
s:/

/o
ne

no
te

.o
ffi

ce
ap

ps
.li

ve
.c

om
/o

/o
ne

no
te

fra
m

e.
as

px
?F

i=
SD

...

1
of

 1
11

/3
0/

16
, 2

:4
6

PM

The following chart shows the cost of these various cases.

start end cost to OPT

= = 1
= 6= 2
6= = 0
6= 6= 1

It’s easy to work through and figure out what OPT must do in each of these cases, and verify that
the bound shown on the right is optimal. If OPT and MARKING start and end in the same state
then the very first access costs OPT 1. (All the other accesss can be free if it immediately puts
itself in MARKING’s final state.)

Suppose OPT and MARKING start in the same state and end in different states. There’s no way
that OPT can do this for a cost of only 1. The very first access costs OPT 1. Now if it goes
immediately to a state that differs from MARKING’s finals state, then it will be hit by a costly
access at some point during the phase. (The remaining k pages are all accessed during the phase.)

Similar arguments apply to the remaining two rows of the table. Since the initial states of OPT
and MARKING are the same, the table proves that the cost of the first m phases for OPT is at
least m. This completes the proof.

�

7

