
Subhash Suri UC Santa Barbara

Point Location

• Preprocess a planar, polygonal subdivision
for point location queries.

p = (18, 11)

• Input is a subdivision S of complexity n,
say, number of edges.

• Build a data structure on S so that for a
query point p = (x, y), we can find the face
containing p fast.

• Important metrics: space and query
complexity.

Subhash Suri UC Santa Barbara

The Slab Method

• Draw a vertical line through each vertex.
This decomposes the plane into slabs.

• In each slab, the vertical order of line
segments remains constant.

A

B

C

D

A

B

C

D

s1

s2

s3

s4

s5

Slab 1

Partition into slabs

• If we know which slab p = (x, y) lies, we
can perform a binary search, using the
sorted order of segments.

Subhash Suri UC Santa Barbara

The Slab Method

• To find which slab contains p, we perform
a binary search on x, among slab
boundaries.

• A second binary search in the slab
determines the face containing p.

A

B

C

D

A

B

C

D

s1

s2

s3

s4

s5

Slab 1

Partition into slabs

• Thus, the search complexity is O(log n).

• But the space complexity is Θ(n2
).

Subhash Suri UC Santa Barbara

Optimal Schemes

• There are other schemes (kd-tree,
quad-trees) that can perform point
location reasonably well, they lack
theoretical guarantees. Most have very
bad worst-case performance.

• Finding an optimal scheme was
challenging. Several schemes were
developed in 70’s that did either O(log n)

query, but with O(n log n) space, or
O(log

2 n) query with O(n) space.

• Today, we will discuss an elegant and
simple method that achieved optimality,
O(log n) time and O(n) space [D.
Kirkpatrick ’83].

• Kirkpatrick’s scheme however involves
large constant factors, which make it less
attractive in practice.

• Later we will discuss a more practical,
randomized optimal scheme.

15-451/651: Design & Analysis of Algorithms
Lecture 27. Point Location

December 8, 2016

1

Later we will discuss the use of persistent data structures to obtain a practical and almost optimal solution.

Subhash Suri UC Santa Barbara

Kirkpatrick’s Algorithm

• Start with the assumption that planar
subdivision is a triangulation.

• If not, triangulate each face, and label
each triangular face with the same label as
the original containing face.

• If the outer face is not a triangle, compute
the convex hull, and triangulate the
pockets between the subdivision and CH.

• Now put a large triangle abc around the
subdivision, and triangulate the space
between the two.

a b

c

Subhash Suri UC Santa Barbara

Modifying Subdivision

• By Euler’e formula, the final size of this
triangulated subdivision is still O(n).

• This transformation from S to
triangulation can be performed in
O(n log n) time.

a b

c

• If we can find the triangle containing p,
we will know the original subdivision face
containing p.

Subhash Suri UC Santa Barbara

Hierarchical Method

• Kirkpatrick’s method is hierarchical:
produce a sequence of increasingly coarser
triangulations, so that the last one has
O(1) size.

• Sequence of triangulations T0, T1, . . . , Tk,
with following properties:

1. T0 is the initial triangulation, and Tk is
just the outer triangle abc.

2. k is O(log n).
3. Each triangle in Ti+1 overlaps O(1)

triangles of Ti.

• Let us first discuss how to construct this
sequence of triangulations.

Subhash Suri UC Santa Barbara

Building the Sequence

• Main idea is to delete some vertices of Ti.

• Their deletion creates holes, which we
re-triangulate.

Vertex deletion and re−triangulation

u

v

• We want to go from O(n) size subdivision
T0 to O(1) size subdivision Tk in O(log n)

steps.

• Thus, we need to delete a constant
fraction of vertices from Ti.

• A critical condition is to ensure each new
triangle in Ti+1 overlaps with O(1)

triangles of Ti.

2

Subhash Suri UC Santa Barbara

Independent Sets

• Suppose we want to go from Ti to Ti+1, by
deleting some points.

• Kirkpatrick’s choice of points to be
deleted had the following two properties:

[Constant Degree] Each deletion candidate
has O(1) degree in graph Ti.

• If p has degree d, then deleting p leaves
a hole that can be filled with d° 2

triangles.
• When we re-triangulate the hole, each

new triangle can overlap at most d
original triangles in Ti.

Vertex deletion and re−triangulation

u

v

Subhash Suri UC Santa Barbara

Independent Sets

[Independent Sets] No two deletion
candidates are adjacent.

• This makes re-triangulation easier; each
hole handled independently.

Vertex deletion and re−triangulation

u

v

Subhash Suri UC Santa Barbara

I.S. Lemma

Lemma: Every planar graph on n vertices
contains an independent vertex set of size
n/18 in which each vertex has degree at most
8. The set can be found in O(n) time.

• We prove this later. Let’s use this now to
build the triangle hierarchy, and show how
to perform point location.

• Start with T0. Select an ind set S0 of size
n/18, with max degree 8. Never pick a, b, c,
the outer triangle’s vertices.

• Remove the vertices of S0, and
re-triangulate the holes.

• Label the new triangulation T1. It has at
most 17

18n vertices. Recursively build the
hierarchy, until Tk is reduced to abc.

• The number of vertices drops by 17/18

each time, so the depth of hierarchy is
k = log18/17 n º 12 log n

Subhash Suri UC Santa Barbara

Illustration

T2

T3

T4

T1

T0

(not shown)

n
k o

gh
i

j

c d f
eb

y
z

vxT
w u

t

srqp

G
F

C
D

B
E

A

T
J

IH

T

T

0 1

23

4

T m

a
l

z

H I J

A B C D E F G

p

a b d e g hfc i j k l m n o

K

q r s t u v w x y

3

Subhash Suri UC Santa Barbara

The Data Structure

• Modeled as a DAG: the root corresponds
to single triangle Tk.

• The nodes at next level are triangles of
Tk°1.

• Each node for a triangle in Ti+1 has
pointers to all triangles of Ti that it
overlaps.

• To locate a point p, start at the root. If p
outside Tk, we are done (exterior face).
Otherwise, set t = Tk, as the triangle at
current level containing p.

T2

T3

T4

T1

T0

(not shown)

n
k o

gh
i

j

c d f
eb

y
z

vxT
w u

t

srqp

G
F

C
D

B
E

A

T
J

IH

T

T

0 1

23

4

T m

a
l

z

H I J

A B C D E F G

p

a b d e g hfc i j k l m n o

K

q r s t u v w x y

Subhash Suri UC Santa Barbara

The Search

z

H I J

A B C D E F G

p

a b d e g hfc i j k l m n o

K

q r s t u v w x y

J

IH

G
F

C
D

BA

E

y

vx
u

t

srqp

z

w
a

m
n

gh
i

j

c d f
eb

o
k

l

• Check each triangle of Tk°1 that overlaps
with t—at most 6 such triangles. Update
t, and descend the structure until we
reach T0.

• Output t.

Subhash Suri UC Santa Barbara

Analysis

z

H I J

A B C D E F G

p

a b d e g hfc i j k l m n o

K

q r s t u v w x y

J

IH

G
F

C
D

BA

E

y

vx
u

t

srqp

z

w
a

m
n

gh
i

j

c d f
eb

o
k

l

• Search time is O(log n)—there are O(log n)

levels, and it takes O(1) time to move from
level i to level i° 1.

• Space complexity requires summing up
the sizes of all the triangulations.

• Since each triangulation is a planar graph,
it is sufficient to count the number of
vertices.

• The total number of vertices in all
triangulations is

n
°
1 + (17/18) + (17/18)

2
+ (17/18)

3
+ · · ·

¢
∑ 18n.

• Kirkpatrick structure has O(n) space and
O(log n) query time.

Subhash Suri UC Santa Barbara

Finding I.S.

• We describe an algorithm for finding the
independent set with desired properties.

• Mark all nodes of degree ∏ 9.

• While there is an unmarked node, do

1. Choose an unmarked node v.
2. Add v to IS.
3. Mark v and all its neighbors.

• Algorithm can be implemented in O(n)

time—keep unmarked vertices in list, and
representing T so that neighbors can be
found in O(1) time.

v

4

Subhash Suri UC Santa Barbara

I.S. Analysis

• Existence of large size, low degree IS
follows from Euler’s formula for planar
graphs.

• A triangulated planar graph on n vertices
has e = 3n° 6 edges.

• Summing over the vertex degrees, we getX

v

deg(v) = 2e = 6n° 12 < 6n.

• We now claim that at least n/2 vertices
have degree ∑ 8.

• Suppose otherwise. Then n/2 vertices all have degree ∏ 9.
The remaining have degree at least 3. (Why?)

• Thus, the sum of degrees will be at least 9n
2 + 3n

2 = 6n,
which contradicts the degree bound above.

• So, in the beginning, at least n/2 nodes are unmarked. Each
chosen v marks at most 8 other nodes (total 9 counting
itself.)

• Thus, the node selection step can be repeated at least n/18
times.

• So, there is a I.S. of size ∏ n/18, where each node has degree

∑ 8.

5

1 Point Location using Persistent Search Trees

In this section we describe another approach to the point-location problem, based on a fully-
functional, or “persistent”, representation of sets. We obtain an O(log n) query time and O(n log n)
space solution. So it is not optimal in terms of space. This can be made optimal by a more
sophisticated way to make data structures persistent.

Let’s go back to the approach of dividing the polygonal subdivision into slabs. With the represen-
tation described earlier, doing a point location query took only O(log n) time. The problem was
that the data structure took too much space.

Subhash Suri UC Santa Barbara

The Slab Method

• Draw a vertical line through each vertex.
This decomposes the plane into slabs.

• In each slab, the vertical order of line
segments remains constant.

A

B

C

D

A

B

C

D

s1

s2

s3

s4

s5

Slab 1

Partition into slabs

• If we know which slab p = (x, y) lies, we
can perform a binary search, using the
sorted order of segments.

Let’s examine this problem a little more closely. The reason that the space is potentially quadratic
in n is that there is the possibility that a long horizontal segment can be divided up into many
pieces, one for each slab. For example, the segment separating regions A and B is divided into
three parts.

If there were some way that we could avoid having to store that redundantly in multiple slabs, we
have a chance of controlling the space blow-up. This is the approach we take here.

With this in mind, let’s examine the di↵erence between consecutive slabs. Call the two slabs Si

and Si+1. The di↵erences between the two slabs occur when there is a vertex v of the subdivision
along their boundary. To convert Si into Si+1 we delete from Si the segments incident on v from
the left, and we insert into Si the segments incident on v from the right. We do this for all the
vertices on the boundary between the two slabs.

The total number of insertions and deletions that occur in the entire diagram is twice the number
of segments, or O(n). It turns out that using functional programming we can incurr a space coast
of O(log n) per insertion or deletion.

6

1.1 Fully Functional Ordered Sets

A slab is represented by a set of non-vertical segments. For each non-vertical we’re going to keep
the equation of its line. So for segment i we keep mix + bi, where mi is the slope and bi is the
intercept. This representation will allow us to determine which of two segments is higher (at a
particular x value).

A slab is a set of segments. We’re going to store this in a balance binary search tree. It will be a
fully functional implementation. This means, for example, that if we insert a segment a into a set
S, it returns a new set S0. The original set S remains the same.

Our set data structure will support the following operations:

Insert(S, a): Insert a segment a into a set S. Return the result.

Delete(S, a): Delete a segment a from the set S. Return the result.

Lookup(S, p): Given a point p and a set of segments S, return a segment from S that neighbors
the region containing p.

Fully functional implementations of sets based on balanced binary search trees are standard features
of functional programming languages such as Haskell, Ocaml, and SML. Furthermore, it’s easy to
create fully functional implementations in any language. You just have to maintain the discipline
of never modifying any fields of a note. Instead you create a new node initialized with the values
you want in each field.

Because the sets are stored as a tree, the way lookup works is that it returns the last segment
touched when searching down the tree for a segment containing point p.

The space used by Insert and Delete is O(log n). This happens automatically in a functional
implementation of sets using balanced binary search trees. (You can also think of it as copying the
path from the root to a node that changes.)

1.2 Building the Data Structure

Start out with an empty slab S0. Process the vertices v0, . . . , vk in left-to-right order. To process
vertex vi we take slab Si and delete the segments connecting to it on the left and insert the ones
that connect to it on the right. After this, we have slab Si+1. The space used by this is O(n log n).

As we do this we build a an array A, sorted by x, with pointers to the slabs that we constructed
in this scan. So given x we can find in O(log n) time the slab containing x.

We’re also going to build a dictionary D which keeps, for each non-vertical segment in the diagram,
the name of the region above it and below it.

1.3 Doing Point Location

Given a point p = (x, y) here is how we find the region containing p.

First we find the slab containing p by doing binary search in the array A. Say it’s in slab Si. Now
we do a lookup of p in Si. This gives us a segment s bounding the region containing point p. Now
we determine if the point p is above or below s. So we can then lookup in the dictionary D the
name of the region containing the point p.

This process is O(log n) time.

7

1.4 Achieving O(n) Space

Optimal space can be achieved by using the “fat node” method of making data structures persistent.
It’s described in this paper by Sarnak and Tarjan.

www.link.cs.cmu.edu/15859-f07/papers/point-location.pdf

The details are beyond the scope of this course, but feel free to talk to me about how it works.

8

