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Abstract. We show that whenever there is a sharp drop in the numer-
ical rank defined by a personalized PageRank vector, the location of the
drop reveals a cut with small conductance. We then show that for any
cut in the graph, and for many starting vertices within that cut, an ap-
proximate personalized PageRank vector will have a sharp drop sufficient
to produce a cut with conductance nearly as small as the original cut.
Using this technique, we produce a nearly linear time local partitioning
algorithm whose analysis is simpler than previous algorithms.

1 Introduction

When we are dealing with computational problems arising in complex networks
with prohibitively large sizes, it is often desirable to perform computations whose
cost can be bounded by a function of the size of their output, which may be quite
small in comparison with the size of the whole graph. Such algorithms we call
local algorithms (see [1]). For example, a local graph partitioning algorithm finds
a cut near a specified starting vertex, with a running time that depends on the
size of the small side of the cut, rather than the size of the input graph.

The first local graph partitioning algorithm was developed by Spielman and
Teng [8], and produces a cut by computing a sequence of truncated random
walk vectors. A more recent local partitioning algorithm achieves a better run-
ning time and approximation ratio by computing a single personalized PageRank
vector [1]. Because a PageRank vector is defined recursively (as we will describe
in the next section), a sweep over a single approximate PageRank vector can
produce cuts with provably small conductance. Although this use of PageRank
simplified the process of finding cuts, the analysis required to extend the ba-
sic cut-finding method into an efficient local partitioning algorithm remained
complicated.

In this paper, we consider the following consequence of the personalized
PageRank equation,

p = αv + (1 − α)pW,



where p is taken to be a row vector, v is the indicator vector for a single vertex v,
and W is the probability transition matrix of a random walk on the graph (this
will be defined in more detail later). When a random walk step is applied to the
personalized PageRank vector p, every vertex in the graph has more probability
from pW than it has from p, except for the seed vertex v. This implies something
strong about the ordering of the vertices produced by the PageRank vector p:
there cannot be many links between any set of vertices with high probability in p
and any set of vertices with low probability in p. More precisely, whenever there
is a sharp drop in probability, where the kth highest ranked vertex has much
more probability than the k(1 + δ)th vertex, there must be few links between
the k highest ranked vertices and the vertices not ranked in the top k(1 + δ).

We will make this observation rigorous in Lemma 1, which provides an intu-
itive proof that personalized PageRank identifies a set with small conductance.
In the section that follows, we will prove a series of lemmas that describe neces-
sary conditions for a sharp drop to exist. In the final section, we will use these
techniques to produce an efficient local partitioning algorithm, which finds cuts
in nearly linear time by detecting sharp drops in approximate PageRank vectors.

2 Preliminaries

PageRank was introduced by Brin and Page [3, 7]. The PageRank vector pr(α, s)
is defined to be the unique solution of the equation

pr(α, s) = αs + (1 − α)pr(α, s)W, (1)

where α is a constant in (0, 1] called the teleportation constant , s is a vector called
the starting vector, and W is the random walk transition matrix W = D−1A.
Here D denotes the diagonal matrix whose diagonal entries are the degrees of
the vertices, and A denotes the adjacency matrix of the graph.

The PageRank vector that is usually associated with search ranking has a
starting vector equal to the uniform distribution 1

n1. PageRank vectors whose
starting vectors are concentrated on a smaller set of vertices are often called
personalized PageRank vectors. These were introduced by Haveliwala [5], and
have been used to provide personalized search ranking and context-sensitive
search [2, 4, 6]. We will consider PageRank vectors whose starting vectors are
equal to the indicator function 1v for a single vertex v. The vertex v will be
called the starting vertex, and we will use the notation pr(α, v) = pr(α, 1v).

The volume of a subset S ⊆ V of vertices is Vol(S) =
∑

x∈S d(x). We remark
that Vol(V ) = 2m, and we will sometimes write Vol(G) in place of Vol(V ). We
write e(S, T ) to denote the number of edges between two disjoint sets of vertices
S and T . The conductance of a set is

Φ(S) =
e(S, T )

min (Vol(S), 2m − Vol(S))
.



The amount of probability from a vector p on a set S of vertices is written
p(S) =

∑

x∈S p(x). We will sometimes refer to the quantity p(S) as an amount
of probability even if p(V ) is not equal to 1. As an example of this notation,
the amount of probability from the PageRank vector pr(α, v) on a set S will be
written pr(α, χv)(S). The support of a vector is the set of vertices on which it
is nonzero, Support(p) = {v | p(v) #= 0}.

2.1 Approximate Personalized PageRank Vectors

Here are some useful properties of PageRank vectors (also see [5] and [6]).

Proposition 1. For any starting vector s, and any constant α in (0, 1], there
is a unique vector pr(α, s) satisfying pr(α, s) = αs + (1 − α)pr(α, s)W.

Proposition 2. For any fixed value of α in (0, 1], there is a linear transforma-
tion Rα such that pr(α, s) = sRα. Furthermore, Rα is given by the matrix

Rα = αI + α
∞
∑

t=1

(1 − α)tW t. (2)

This implies that a PageRank vector pr(α, s) is linear in its starting vector s.

Instead of computing the PageRank vector pr(α, v) exactly, we will approxi-
mate it by another PageRank vector pr(α, v−r) with a slightly different starting
vector, where r is a vector with nonnegative entries. If r(v) ≤ εd(v) for every ver-
tex in the graph, then we say pr(α, v − r) is an ε-approximate PageRank vector
for pr(α, v).

Definition 1. An ε-approximate PageRank vector for pr(α, v) is a PageRank
vector pr(α, v − r) where the vector r is nonnegative and satisfies r(u) ≤ εd(u)
for every vertex u in the graph.

We will use the algorithm ApproximatePR(v, α, ε) described in the following
theorem to compute ε-approximate PageRank vectors with small support. The
running time of the algorithm depends on ε and α, but is independent of the
size of the graph.

Theorem 1. For any vertex v, any constant α ∈ (0, 1], and any constant ε ∈
(0, 1], The algorithm ApproximatePR(v, α, ε) computes an ε-approximate PageR-
ank vector p = pr(α, v− r) with support Vol(Support(p)) ≤ 2

(1−α)ε . The running
time of the algorithm is O( 1

εα ).

The proof of this theorem, and the description of the algorithm, were given in
[1]. We will use the algorithm as a black box.



3 A sharp drop in PageRank implies a good cut

We describe a normalized rank function derived from a PageRank vector, and
the ordering of the vertices induced by that rank function.

Definition 2. Given a PageRank vector p, we define the following.

– Define the rank function q to be q(u) = p(u)/d(u).
– Let π be a permutation that places the vertices in nonincreasing order of

rank, so that
q(π(1)) ≥ q(π(2)) ≥ · · · ≥ q(π(n)).

This is the ordering induced by the PageRank vector. An integer j ∈ [1, n]
will be called an index, and we will say that π(j) is the vertex at index j.

– Let Sj = {π(1), . . . , π(j)} be the set containing the j vertices of highest rank.
The set Sj is called the jth level set of the PageRank vector.

– Define the shorthand notation q(j) = q(π(j)) and V (j) = Vol(Sj).

We now prove the main lemma. If there is a sharp drop in rank at Sj , then the
set Sj has small conductance. We will prove the contrapositive instead, because
that is how we will eventually apply the lemma. Namely, we will prove that
either the set Sj has small conductance, or else there is an index k > j where
the volume Vol(Sk) is significantly larger than Vol(Sj), and the rank q(k) is not
much smaller than q(j).

Lemma 1 (Sharp Drop Lemma). Let p = pr(α, v − r) be an approximate
PageRank vector. Let φ ∈ (0, 1) be a real number, and let j be any index in
[1, n]. Either the number of edges leaving Sj satisfies e(Sj , S̄j) < 2φVol(Sj), or
else there is some index k > j such that

Vol(Sk) ≥ Vol(Sj)(1 + φ) and q(k) ≥ q(j) − α/φVol(Sj).

Proof. For any set S of vertices,

pW (S) = p(S) −
∑

(u,v)∈e(S,S̄)

q(u) − q(v).

Since p = pr(α, v − r) and the vector r is nonnegative,

pW = (1 − α)−1(p − α(v − r)) ≥ p − αv.

The two equations above imply that
∑

(u,v)∈e(S,S̄)

q(u) − q(v) ≤ α. (3)



Now consider the level set Sj . If Vol(Sj)(1 + φ) > Vol(G), then

e(SjS̄j) ≤ Vol(G)(1 − 1
1 + φ

) ≤ φVol(Sj),

and the theorem holds trivially. If Vol(Sj)(1 + φ) ≤ Vol(G), then there is a
unique index k such that

Vol(Sk−1) ≤ Vol(Sj)(1 + φ) ≤ Vol(Sk).

If e(Sj, S̄j) < 2φVol(Sj), we are done. If e(Sj , S̄j) ≥ 2φVol(Sj), then e(Sj , S̄k−1)
is also large,

e(Sj , S̄k−1) ≥ ∂(Sj) − Vol(Sk−1 \ Sj) ≥ 2φVol(Sj) − φVol(Sj) = φVol(Sj).

Using equation (3),

α ≥
∑

(u,v)∈e(Sj ,S̄j)

q(u) − q(v) ≥
∑

(u,v)∈e(Sj ,S̄k−1)

q(u) − q(v)

≥ e(Sj , S̄k−1)(q(j) − q(k))
≥ φVol(Sj) · (q(j) − q(k)).

This shows that q(j) − q(k) ≤ α/φVol(Sj), completing the proof.

4 Ensuring that a sharp drop exists

In this section, we will introduce several tools that will allow us to show that
a sharp drop in rank exists for many personalized PageRank vectors. When we
present the local partitioning algorithm in the next section, these tools will be
used to prove its approximation guarantee.

Throughout this section and the next, we have two PageRank vectors to
consider, the PageRank vector p = pr(α, v), and the approximate PageRank
vector p̃ = pr(α, v−r) that will be computed by the local partitioning algorithm.
These two PageRank vectors induce two different orderings π and π̃, which lead
to two different rank functions q(k) and q̃(k), which produce two collections of
level sets Sk and S̃k, which have different volumes V (k) = Vol(Sk) and Ṽ (k) =
Vol(S̃k).

We start by showing there is some index i where the rank q(i) is not much
smaller than 1/V (i). This lemma doesn’t use any special properties of PageRank
vectors, and is true for any nonnegative vector whose entries sum to 1.

Lemma 2 (Integration Lemma). Let q be the rank function of any vector p
for which ‖p‖1 = 1. Then, there exists an index i such that q(i) ≥ 1

H(2m)V (i) ,
where H(2m) =

∑2m
k=1 1/k = O(log m).



Proof. If we assume that q(i) < c/V (i) for all i ∈ [1, n], then

n
∑

i=1

q(i)d(i) < c
n

∑

i=1

d(i)
V (i)

≤ c
2m
∑

k=1

1
k

= cH(2m).

If c = 1/H(2m), this would imply ‖p‖1 =
∑n

i=1 q(i)d(i) < 1, so we must have
q(i) ≥ 1

H(2m)V (i) for some index i.

We now give a lower bound on the rank function of an ε-approximate PageR-
ank vector p̃ = pr(α, v − r) that depends on the rank function of the PageRank
vector p = pr(α, v) that is being approximated, and on the error parameter ε.

Lemma 3 (Approximation Error Lemma). Let q be the rank function for
a PageRank vector p = pr(α, v), and let q̃ be the rank for an ε-approximate
PageRank vector p̃ = pr(α, v − r). For any index i, there is an index j such that

q̃(j) ≥ q(i) − ε and Vol(S̃j) ≥ Vol(Si).

Proof. If v ∈ Si, then p(v)/d(v) ≥ q(i). Since p̃ is an ε-approximation of p,

p̃(v)/d(v) ≥ p(v)/d(v) − ε ≥ q(i) − ε.

Therefore, the set of vertices for which p̃(v)/d(v) ≥ q(i) − ε has volume at least
Vol(Sj), which proves the lemma.

The following lemma shows what happens when you repeatedly apply the
Sharp Drop Lemma, but fail to find a cut with small conductance. You will find
a sequence of larger and larger indices for which the rank does not drop very
quickly. We give a lower bound on the rank of the final index in the sequence.
We will eventually contradict this lower bound, which will show that one of the
applications of the Sharp Drop Lemma finds a cut with small conductance.

Lemma 4 (Chaining Lemma). Let {k0 . . . kf} be an increasing sequence of
indices such that for each i ∈ [0, f − 1], the following holds.

q(ki+1) ≥ q(ki) − α/φV (ki) and V (ki+1) ≥ (1 + φ)V (ki).

Then, the last index kf satisfies

q(kf ) ≥ q(k0) − 2α/φ2V (k0).



Proof. The bound on the change in volume implies that V (ki) ≥ (1 + φ)iV (k0)
for all i ∈ [0, f − 1]. Therefore,

q(kf ) ≥ q(k0) −
α

φV (k0)
− α

φV (k1)
− · · ·− α

φV (kf−1)

≥ q(k0) −
α

φV (k0)

(

1 − 1
(1 + φ)

− · · ·− 1
(1 + φ)f−1

)

≥ q(k0) −
α

φV (k0)
(
1 + φ

φ
)

≥ q(k0) −
2α

φ2V (k0)
.

This completes the proof of the Chaining Lemma.

To contradict the lower bound from the Chaining Lemma, we will place a
lower bound on pr(α, v)(C), that depends on the conductance of C. This bound
will apply to many starting vertices v within C.

Definition 3. Given a set C, let Cα be the set of vertices v within C such that
pr(α, v)(C̄) is at most 2Φ(C)/α.

Lemma 5 (Probability Capturing Lemma). For any set C and value of α,
we have Vol(Cα) ≥ (1/2)Vol(C).

Proof. Let πC be the probability distribution obtained by sampling a vertex v
from C with probability d(v)/Vol(C). It is not difficult to verify the following
statement, which was proved in [1].

pr(α, πC)W (C̄) ≤ pr(α, πC)(C̄) + Φ(C).

We will apply this observation to the personalized PageRank equation.

pr(α, πC)(C̄) = [απC + (1 − α)pr(α, πC)W ](C̄)
= (1 − α)[pr(α, πC)W ](C̄)
≤ (1 − α)pr(α, πC)(C̄) + Φ(C).

This implies
pr(α, πC)(C̄) ≤ Φ(C)/α.

If we sample a vertex v from the distribution πC , then at least half of the time
pr(α, v)(C̄) is at most twice its expected value of pr(α, πC)(C̄), and hence at
least half the time v is in Cα. This implies that the volume of the set Cα is at
least half the volume of C.



5 Local partitioning algorithm

The local partitioning algorithm can be described as follows:

Local Partition(v, φ, x):
The input to the algorithm is a starting vertex v, a target conductance
φ ∈ (0, 1/3), and a target volume x ∈ [0, 2m].
PageRank computation:

1. Let γ = H(2m), let α = φ2

8γ , and let ε = 1
2γx .

2. Compute an ε-approximate PageRank vector p̃ = pr(α, v − r),
using ApproximatePR(v, α, ε).

3. Order the vertices so that q̃(1) ≥ q̃(2) ≥ · · · ≥ q̃(n).

Finding a cut:
The algorithm will now examine a sequence of vertices, looking for a
sharp drop. We let {ki} be the indices of the vertices examined by the
algorithm. The first index examined by the algorithm will be k0, and the
last index examined will be kf . We will now describe how these indices
are chosen.

1. Let the starting index k0 be the largest index such that
q̃(k0) ≥ 1/2γṼ (k0). If no such index exists, halt and output FAIL:
NO STARTING INDEX.

2. While the algorithm is still running:
(a) If (1 + φ)Ṽ (ki) > Vol(G) or if Ṽ (ki) > Vol(Support(p̃)),

then let kf = ki, output FAIL: NO CUT FOUND and quit.
(b) Otherwise, let ki+1 be the smallest index such that

Ṽ (ki+1) ≥ Ṽ (ki)(1 + φ).
(c) If q̃(ki+1) ≤ q̃(ki) − α/φṼ (ki), then let kf = ki, output the set

Ski , and quit. Otherwise, repeat the loop.

Remarks:
When we analyze the algorithm, we will need the following observa-
tions. Regardless of whether the algorithm fails or successfully out-
puts a cut, the sequence of indices {k0, . . . , kf} examined by the algo-
rithm satisfies the conditions of Lemma 4. If the algorithm fails during
the loop of step 2, then kf satisfies either (1 + φ)Ṽ (kf ) > Vol(G) or
Ṽ (kf ) > Vol(Support(p̃)).

Theorem 2. The running time of Local Partition(v, φ, x) is O(x log2 m
φ2 ).

Proof. The running time of the algorithm is dominated by the time to compute
and sort p̃. Computing p̃ can be done in time O(1/εα) = O(xγ/α) = O(x log m

α )



using ApproximatePR. The support of this vector has volume O(1/ε) = O(γx) = O(x log m),
so the time required to sort p̃ is

O(|Support(p̃)| log |Support(p̃)|) = O(x log2 m).

Since we have set α = Ω(φ2/ logm), the total running time is

O(x
log m

α
+ x log2 m) = O(x

log2 m

φ2
).

Theorem 3. Consider a run of the algorithm Local Partition on the input
values v, φ, and x. Let p̃ = pr(α, v − r) be the ε-approximate PageRank vector
computed by the algorithm. Note that α = φ2/8γ and ε = 1/2γx. The following
statements are true.

1. Let q be the rank function of the PageRank vector p = pr(α, v). There exists
an index K such that q(K) ≥ 1/γVol(SK). Furthermore, if the target volume
x satisfies x ≥ Vol(SK), then the algorithm finds a starting index k0 that
satisfies Vol(S̃k0) ≥ Vol(SK).

2. Assume there exists a set C whose volume satisfies Vol(C) ≤ 1
2Vol(G), whose

conductance satisfies Φ(C) ≤ α/80γ, and for which the starting vertex v is
contained in Cα. If the target volume x satisfies x ≥ Vol(SK), then the
algorithm successfully outputs a set. Furthermore, the set S output by the
algorithm has the following properties.
(a) (Approximation guarantee) Φ(S) ≤ 3φ = 3

√
8γα.

(b) (Volume lower bound) Vol(S) ≥ Vol(SK).
(c) (Volume upper bound) Vol(S) ≤ (5/9)Vol(G).
(d) (Intersection with C) Vol(S ∩ C) ≥ (9/10)Vol(S).

Proof. We begin by considering the PageRank vector p = pr(α, v) in order to
prove claim 1 of the theorem. Lemma 2 shows that there is some index K for
which q(K) ≥ 1/γVol(SK), which proves part of the claim. To prove the other
part, we assume that x ≥ Vol(SK), and show that the algorithm finds a starting
index k0 that satisfies Vol(S̃k0) ≥ Vol(SK). Lemma 3 shows that there exists an
index j such that Vol(S̃j) ≥ Vol(SK) and

q̃(j) ≥ q(K) − ε ≥ 1
γVol(SK)

− ε.

Since x ≥ Vol(SK), we have ε = 1/2γx ≤ 1/2γVol(SK), which implies the
following.

q̃(j) ≥ 1
γVol(SK)

− 1
2γx

≥ 1
2γVol(SK)

≥ 1
2γVol(S̃j)

.



This shows that j may be chosen as a starting index, so the algorithm is assured
of choosing some starting index k0 ≥ j, which we know will satisfy

Vol(S̃k0) ≥ Vol(SK) and q̃(k0) ≥
1

2γVol(S̃k0 )
.

This proves Claim 1 of the theorem.

We now move on to the proof of Claim 2. Let kf be the index of the last
vertex considered by the algorithm. We will give a lower bound on q̃(kf ). Because
the rank q̃(ki+1) is not much smaller than q̃(ki) at each step, Lemma 4 shows
that

q̃(kf ) ≥ q̃(k0) −
(2α/φ2)
Vol(S̃k0)

.

We have set α = φ2/8γ to ensure that 2α/φ2 ≤ 1/4γ, and so

q̃(kf ) ≥ q̃(k0) −
(2α/φ2)
Vol(S̃k0)

≥ 1
2γVol(S̃k0)

− 1
4γVol(S̃k0 )

≥ 1
4γVol(S̃k0)

.

We now use the assumptions that v ∈ Cα and Φ(C) ≤ α/80γ, and apply
Lemma 5 to give the following bound on p̃(C̄).

p̃(C̄) ≤ p(C̄) ≤ 2Φ(C)/α ≤ 1/40γ.

Combining our lower bound on q̃(kf ) with our upper bound on p̃(C̄) gives the
following bound on the intersection of S̃kf with C̄.

Vol(S̃kf ∩ C̄) ≤ p̃(C̄)
q̃(kf )

≤ 4γVol(S̃k0)
40γ

≤ 1
10

Vol(S̃kf ).

This implies

Vol(S̃kf ) ≤ Vol(C) + Vol(S̃kf ∩ C̄) ≤ Vol(C) +
1
10

Vol(S̃kf ).

We now use the fact that Vol(C) ≤ (1/2)Vol(G),

Vol(S̃kf ) ≤ (10/9)Vol(C) ≤ (5/9)Vol(G) ≤ Vol(G)
1 + φ

.



The last step follows by assuming that φ ≤ 1/3. We can do so without loss
of generality because the approximation guarantee of the theorem is vacuous if
φ ≥ 1/3.

The equation above shows that the algorithm will not experience a fail-
ure caused by (1 + φ)Vol(S̃kf ) > Vol(G), and our lower bound on q̃(kf ) en-
sures that the algorithm will not experience a failure caused by Vol(S̃kf ) >
Vol(Support(p̃)). This ensures that the algorithm does not fail and output FAIL:
NO CUT FOUND. We have already ensured that the algorithm does not fail
and output FAIL: NO STARTING INDEX. Since we have ruled out all of the
possible failure conditions, the algorithm must successfully output a set.

We must still prove that the set output by the algorithm satisfies all the
properties in claim 2. We have already proved that Vol(S̃kf ) ≤ (5/9)Vol(G),
which proves claim 2(b). We have proved Vol(S̃kf ∩ C̄) ≤ 1

10Vol(S̃kf ), which
proves claim (2d). We have proved Vol(S̃kf ) ≥ Vol(S̃k0) ≥ Vol(SK), which proves
claim (2c).

For the coup de grâce, we will apply the Sharp Drop Lemma. Since the set S̃kf

was output by the algorithm, that set must have the following property: if kf+1

is the smallest index such that Vol(S̃kf+1) ≥ Vol(S̃kf )(1 + φ), then q̃(kf+1) <

q̃(kf )−α/φVol(S̃kf ). We can then apply the Sharp Drop Lemma to show that the
number of edges leaving Skf satisfies e(S̃kf , ¯̃Skf ) < 2φVol(S̃kf ). Since Vol(S̃kf ) ≤
5
9Vol(G), we have Vol(G) − Vol(S̃kf ) ≥ 4

9Vol(G) ≥ 4
5Vol(S̃kf ), and so

Φ(S̃kf ) =
e(S̃kf , ¯̃Skf )

min(Vol(S̃kf ), Vol(G) − Vol(S̃kf ))

≤
2φVol(S̃kf )

(4/5)Vol(S̃kf )

≤ 3φ.

This proves the approximation guarantee of claim (2a).
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