
Internet Mathematics Vol. 3, No. 1: 41-62

Bookmark-Coloring Algorithm
for Personalized PageRank
Computing
Pavel Berkhin

Abstract. We introduce a novel bookmark-coloring algorithm (BCA) that computes au-
thority weights over the web pages utilizing the web hyperlink structure. The computed
vector (BCV) is similar to the PageRank vector defined for a page-specific teleportation.
Meanwhile, BCA is very fast, and BCV is sparse. BCA also has important algebraic
properties. If several BCVs corresponding to a set of pages (called hub) are known, they
can be leveraged in computing arbitrary BCV via a straightforward algebraic process
and hub BCVs can be efficiently computed and encoded.

1. Introduction

The PageRank vector (PageRank citation ranking weight) introduced in [Brin
and Page 98, Page et al. 98] plays an important role in ranking search engine
query results. PageRank vector (PRV) is defined over a directed graph W =
(G,L) of web pages G. It represents the hyperlink-based authority index. The
edges L can be associated with a n×n (sparse) adjacency matrix that we denote
by the same symbol. Element Lij is equal to 1 when there is a link i→ j and is
0 otherwise. The out-degree of a node i is the number of outgoing links deg(i) =∑

j Lij . This and other definitions can be generalized to a weighted directed
graph in which case Lij ≥ 0. A transition matrix is defined as Pij = Lij/deg(i)

© A K Peters, Ltd.
1542-7951/05 $0.50 per page 41



42 Internet Mathematics

for pages with deg(i) > 0, which are called nondangling. Other rows in P are
set to zero. Disregarding this trouble for a while, assume that page authorities
pi are such that each page endorses its out-neighbors with equal fraction of its
authority. This means that p is a stationary point of the following transformation

p(k+1)
j =

∑

i→j

p(k)
i /deg(i) or p(k+1) = PT p(k). (1.1)

Getting back to dangling pages, a simple fix is to add artificial links from them
to all other pages on the web. Formally,

P
′
= P + d · vT , (1.2)

where v is a so-called teleportation distribution as, for example, uniform dis-
tribution v = e, e = en = (1/n, . . . , 1/n) and d is a dangling page indicator,
di = δdeg(i)

0 . Here and below we use a common notation δb
a = 1, if a = b, and

δb
a = 0, if a $= b. The modified matrix P ′ is row-stochastic.
Under the conditions of strict connectivity and aperiodicity of the graph W, the

Perron-Frobenius theorem guarantees that the simple power iterations process
(1.1) starting with any nonnegative initial guess p(0) converges to the eigenvector
p of a matrix PT corresponding to its simple principal (unit) eigenvalue. To
achieve strict connectivity, the trick used above for dangling pages is repeated
by adding some degree of teleportation to all the pages:

P
′′

= cP
′
+ (1− c)E, E = ne · vT , 0 < c < 1. (1.3)

Coefficient c is usually picked around 0.85–0.9. After both modifications, Page-
Rank p is defined as the probability distribution over G (p1+· · ·+pn = 1, pi ≥ 0)
such that

p = P ′′T p or p = cP ′T p + (1− c)n(eT · p)v. (1.4)

Finally, PageRank is frequently introduced via the so-called random surfer
model. The Ergodic theorem claims that over a long random walk the average
number of times a surfer visits a page i converges exactly to pi.

The significance of modification (1.3) goes beyond purely technical motiva-
tions of dealing with dangling pages and achieving strict connectivity. If instead
of the uniform teleportation a distribution v that reflects certain preferences is
used, this leads to a personalized ranking of search results. In the following, we
are dealing with personalized PageRank. Different personalization schemes were
suggested [Haveliwala 02, Kamvar et al. 03b]. The most advanced development
of Jeh and Widom [Jeh and Widom 02, Jeh and Widom 03] deals with telepor-
tation vectors v = δ(h) = (δ(h)

i ). Any PRV can be approximated by a series of
such page-specific PRV p(h).



Berkhin: Bookmark-Coloring Algorithm for Personalized PageRank Computing 43

In this paper we consider a model for page-specific PageRank computing that
we call a bookmark-coloring model. Consider a diffusion of a coloring substance
across the graph. At the first moment, a unit amount of paint is injected into
a selected node that we call a bookmark. A fraction α of the paint sticks to the
node, while the remainder (1−α)-fraction flows along out-links. This propagation
continues down the graph recursively. The intensity of the accumulated color
plays the role of the node authority. We assume that the process is initiated with
a fixed bookmark (originating node). We call this a bookmark-coloring algorithm
(BCA). BCA results in a bookmark-coloring vector (BCV).

We will show that BCV can be considered as an efficient and sparse version
of a page-specific PageRank that leads to an almost identical ordering of search
results. BCV also has excellent algebraic properties. These properties are anal-
ogous to the theory developed in [Jeh and Widom 02].

We start with the review of the related work. In Section 3, we discuss the
introduced model, the ways to compute BCV, and the relation between BCV
and PRV. In Section 4, we present a more efficient way of finding general BCV
by leveraging a set of hub page-specific precomputed BCVs. This brings us to the
task of simultaneous computing and encoding of the set of hub specific BCVs.
It is solved in Section 5. This section also contains related developments, in
particular a so-called loop factor concept. In Section 6, we discuss how BCA can
be applied to personalization of web search. Finally, in Section 7, we validate
the introduced concepts with computational results.

2. Related Work

Different methods to accelerate the simple power iterations process (1.1) have
been suggested, including an extrapolation method [Haveliwala et al. 03] (based
on a striking result concerning the second eigenvalue [Haveliwala and Kamvar
03]), a block-structure method [Kamvar et al. 03b], and an adaptive method
[Kamvar et al. 03a].

An eigensystem (1.4) can be cast as a linear system

p = cP ′T p + (1− c)n(eT )v = cPT p + k · v. (2.1)

Linear systems have a rich theory of accelerated iterative solutions [Axelsson
94, Stewart 99, Golub and Loan 96]. In conjunction with (2.1), they are analyzed
in [Arasu et al. 02]. In order for ‖p‖ = ‖p |L1 ‖ = 1, scalar k should equal
(1 − c) + c · sink(p), where sink(p) is a sum of pi over dangling i. However,
the actual value of k is not important, since it only results in a rescaling of the
solution. Thus, we can fix k = 1 − c (in the absence of dangling pages, this



44 Internet Mathematics

choice leads to the eigensystem solution). We denote this solution of (2.1) by
p = PR(c, v). So defined, PageRank linearly depends on teleportation vector v.

In the rest of this paper, we handle web pages in a very focused (localized)
way. In the context of PageRank, the idea to handle pages nonuniformly with
different frequencies is exploited in [Abiteboul et al. 03].

Usage of nonuniform teleportation vectors is important for link-based person-
alization. Haveliwala [Haveliwala 02] advocated topic-sensitive PageRanks. Cov-
ered personalization contexts are limited to linear combinations of basic topics
(16 were tried). The block-structure method leads to a block-based personaliza-
tion [Kamvar et al. 03b]. Various other suggestions have been made, going as
far as to define a query-specific PageRank [Richardson and Domingos 02]. The
most significant progress, in our view, is achieved by Jeh and Widom [Jeh and
Widom 02, Jeh and Widom 03]. They propose the most flexible personalization
corresponding to page-specific PRVs. Under their approach, users’ bookmarks
with suitably configured weights naturally induce personalization. The devel-
oped theory provides for real scalability. Jeh and Widom show how a small
portion of basis PRVs corresponding to so-called hub pages H (important se-
lected pages) facilitates computing a general page-specific PRV. Basis hub PRVs
can be compressed (encoded). A so-called hub skeleton, a relatively small data
structure, is instrumental in their decoding. The developed theory is based on
a technical apparatus related to inverse P -distance and its modifications. Our
development presents a similar theory for BCV computing that is technically
straightforward.

Other models besides the random surfer model have been studied. Kleinberg
[Kleinberg 99], for example, introduced a framework similar to PageRank com-
puting that utilized a small query-specific subgraph of W. It resulted in the
algorithm HITS and its variations [Gibson et al. 98, Chakrabarti et al. 98].

3. Bookmark-Coloring Algorithm

In this section we discuss the bookmark-coloring model, its generalizations, BCV
computing, and the relation between BCV and PRV.

3.1. Algorithm Description

Consider a linear version of the PageRank algorithm (2.1) with c = 1 − α and
teleportation vector v = δ(b),

p = αδ(b) + (1− α)PT p.



Berkhin: Bookmark-Coloring Algorithm for Personalized PageRank Computing 45

Dividing both sides by α and setting y = p/α, we get the equation

yj = δ(b)
j + (1− α)

∑

i→j∈L

yi/deg(i).

We want to show that this equation precisely describes the bookmark-coloring
model presented in Section 1. The model is straightforward: starting with some
node b and a unit amount of paint injected in b, retain an α-portion of color to
increment the b-component of authority vector p(b) and distribute the remaining
(1 − α)-portion uniformly among the out-links. According to this model, the
total amount of paint yj that passes through a node j consists of two parts: (1)
the original injected unit color δ(b) (affecting the single page j = b) and (2) the
color reaching the node j as the result of the propagation along the in-links. In
other words, y exactly satisfies the above equation. Only an α portion of paint
that passes through a node j actually sticks to a node; hence, the amount of
paint actually retained by a node j is equal to pj = α · yj . We come to an
interesting conclusion: mathematically bookmark-coloring vector p is equal to
PageRank vector p = PR(c, δ(b)) corresponding to a single-page b teleportation.

We can look at a bookmark coloring vector from a slightly different perspective.
Explicitly showing the dependency on b, we can write that

p(b) = αδ(b) + (1− α)
∑

b→j∈L

p(j)/deg(b). (3.1)

This equation simply reflects the fact that an α portion of the initially injected
unit amount of paint is retained by a node b and that the rest propagates, in-
jecting equal amounts (1 − α)/deg(b) into each node accessible from b. This
leads to the recursive relation (3.1): to find the result of injecting a unit amount
of paint in b, we need to start with the retained amount and then add to it
the results of smaller injections into b’s out-neighbors that are caused by color
propagation. Notice that while conventional equations for PageRank (1.4) and
(2.1) relate different components of a single PageRank vector for a single tele-
portation, equation (3.1) relates many different authority vectors corresponding
to different teleportations.

Algorithm 1 presents a conceptual way for finding the bookmark-coloring vec-
tor p = BCA(b,α) = BC(b, w,α), with w = 1.

The recursion in Algorithm 1 can be stopped when, for example, the amount
of color w to be distributed becomes negligible. Some color is lost that does not
affect the ranking. The loss happens for two reasons: (a) when the color amount
falls below a threshold, it is ignored; (b) a dangling page has nowhere to which
to propagate its color.



46 Internet Mathematics

Algorithm 1. (p = BC(b, w,α) Conceptual BCA. )
Input: A page b, a color amount w, and a retention coefficient α.
Output: Vector p
begin

set pi = α · w when i = b and pi = 0 when i $= b
if stopping criterion is met or deg(b) = 0 then

return p
end
for all links b→ j ∈ L do

p = p + BC(j, (1− α) · w/deg(b),α)
end
return p

end

Algorithm 2. (p = BCA(b,α, ε) Realistic BCA.)
Input: A bookmark b, a retention coefficient α, and a tolerance threshold ε.
Output: BCV p.
begin

Initialize vector p = 0 and queue Q = {(b, 1)}
while Q is not empty do

pop a queue Q element (i, w)
pi = pi + α · w
if w < ε then

continue
end
for all links i→ j ∈ L do

if pair (j, s) ∈ Q then
s = s + (1− α) · w/deg(i)

end
else

add a new pair (j, (1− α) · w/deg(i) to Q
end

end
end
return p

end



Berkhin: Bookmark-Coloring Algorithm for Personalized PageRank Computing 47

The conceptual BCA is recursive (it would overload the stack). More essen-
tially, different nodes may send their color to the same node. Meanwhile, a node
getting color from multiple sources handles it all the same. So, it is the best to
wait until as much color as possible reaches a node.

Correspondingly, we prefer to deal with a sequence of transactions, each re-
questing to distribute a color amount w from a certain node j. We store transac-
tions in a data structure Q that is a direct-access queue of pairs (j, w). The direct
access means that we can quickly find a pair by its key j. Now we are ready for
a computationally feasible implementation of BCA, given in Algorithm 2. We
will frequently skip parameter ε in our notation. Correspondingly, our formulas,
being correct for ideal objects, are in reality only ε-approximately correct. They
should be understood as such.

3.2. Improvements and Generalizations

The proposed BC Algorithm can be improved and generalized in different ways.

• Queue Handling. Consider coupling the FIFO heuristic (pop operation on
a queue) with “the largest w goes first” strategy. On an implementation
level, a queue can be from time to time partially sorted (split so that the
queue’s head consists of w above a dynamically updated threshold) or a
real priority queue can be employed. Our motivation in selecting a large w
for processing is to remove most of the paint as soon as possible to speed
up convergence.

• Caching Link Data. Though delayed computing (direct queue updates)
greatly increases BCA effectiveness, pages actually get reinstated into the
queue after being processed. Since getting link data requires I/O, caching
(the LRU cache was actually used) greatly increases the speed.

• Bookmark Sets: Linearity. While so far we used a single page-specific initial
impact, we can actually handle several bookmarks B = {b1, . . . , bk} with
weights W = {w1, . . . , wk} by initializing a queue to Q = {(b1, w1), . . . ,
(bk, wk)}. We denote a solution by BCA(B,W,α). From linearity we have

BCA(B,W,α) = w1BCA(b1,α) + · · · + wkBCA(bk,α).

• Qualified Links. Both PageRank and BCA frameworks could easily handle
links of different weights (e.g., internal-external). While the uniform prop-
agation along all out-links is cheap, assigning to links some weights reflect-
ing their relevance is desirable. The HITS algorithm allows link weighting
(ARC) based on a window around anchor-text [Chakrabarti et al. 98].



48 Internet Mathematics

Such analysis for PageRank is infeasible, since too many pages are in-
volved. Meanwhile, BCA deals with w of various magnitudes. For large w,
a link i → j can be treated nonuniformly, while for a majority of smaller
w we may resort to a cheaper default uniform treatment.

3.3. PageRank and BCV

Though, as we have shown in Section 3.1, PRV and BCV satisfy the same math-
ematical equation

p = αδ(b) + (1− α)PT p, (3.2)

they clearly come from different random surfer and bookmark-coloring models
and result from two distinct computational processes. As mathematics suggests,
experiments confirm an amazing consistency in the ordering of query search
results based on these two authority vectors.

This also raises a question: if the two vectors satisfy the same mathemati-
cal equation, what is the difference between them? Were computations to be
performed up to infinite precision, we would get the same result. Of course, in
practice different algorithms perform differently and lead to similar but quite
different outcomes. We want to emphasize that this difference goes far beyond
the round-off errors and that the stopping thresholds used in practice are well
above machine precision. We now explain what the actual difference is.

Power iterations (1.1) globally treat all the nodes equally and spend most of
the time on irrelevant nodes. In comparison, BCA utilizes local propagation—
it never touches certain distant nodes. So, BCA is much more focused than
PageRank. Another difference is a delay strategy. Updates of existent pairs
happen more frequently than adding new pairs to a queue. Updates are cheap,
since they do not require access to link data. Therefore, BCA has a built-in
effectiveness. For both reasons, BCA is significantly faster than the computing
of a page-specific PRV.

In addition, BCV has another important property: it is sparse. After several
iterations page-specific PageRank becomes nonzero on any page that is reach-
able from b. Meanwhile, a bookmark-coloring vector mostly preserves its spar-
sity, since the stopping criterion prevents overspill. Affected pages are grouped
around the initial b and its successors. BCA grows the vicinity of b adaptively—
propagation does not penetrate beyond the threshold-imposed barrier. At the
first glance, sparsity means that BCV is only appropriate for ranking a part
of the extracted search results. However, relatively low magnitudes of whatever
authority vector cannot be trusted in the ordering process (in reality, a relevance
mechanism relies on many other features). The locality of BCA that allows it to
effectively construct a sparse approximation to PRV is its major advantage over



Berkhin: Bookmark-Coloring Algorithm for Personalized PageRank Computing 49

classic PageRank. Sparsity is very beneficial: compressed sparse objects occupy
less memory and can be computed and fetched faster. We also can estimate an
L1 bound between an exact solution and BCV by simply computing the total
amount of paint still retained in a queue.

Dangling pages do not present any problem to BCA—the color amount (ex-
cept the α-fraction) that gets to them is simply abandoned. They do present
a problem for PageRank computing, and modification (1.2) technically fixes it.
Among many different treatments of dangling pages [Page et al. 98, Eiron et al.
04], this treatment is unique in the sense that it results in a (unscaled) PageRank
p = PR(c, v), which is linear with respect to teleportation vector v and coincides
with BCV: both satisfy equation (3.2).

In conclusion, BCA efficiently computes a sparse approximation to page-
specific PageRank.

4. H-Relative BCA

To cover a variety of personalization contexts in PageRank-based personaliza-
tion, we need to handle different teleportation vectors. Computing and storing a
large number of PageRanks is infeasible. We show that BCA provides a surpris-
ing opportunity for effective cooperative computing and compression of a set of
BCVs. Deviating from the developments of [Haveliwala 02] that restricted per-
sonalization contexts to a linear combination of several topics, Jeh and Widom
[Jeh and Widom 02, Jeh and Widom 03] suggested a way to leverage precom-
puted information in finding arbitrary page-specific PageRanks. In this section
we develop a similar framework. This development is based on the excellent
algebraic properties of BCA.

4.1. Hub Decomposition

Here we build a theory dealing with cooperative computing, encoding, and lever-
aging of precomputed BCVs. Assume that a subset of important pages H ⊂ G,
called a hub, is selected and that N = |H| different basis authority vectors
r(h) = BCA(h,α) for h ∈ H are computed. (Notice that a term hub has a
different meaning in the context of the HITS algorithm). Issues of coopera-
tive computing and encoding are tackled in the next subsection. Here we an-
swer the question: how does one leverage basis vectors in computing arbitrary
p = p(b) = BCA(b, a) when b /∈ H?

To this end, we suggest constructing a projection

p = s1 · r(h1) + · · · + sN · r(hN ) + u.



50 Internet Mathematics

It represents p as a linear combination of basis vectors corrected by a residual
term u that is in some sense “transversal” to the basis vectors. If computing s
and u is easier than computing the original p, our goal is achieved.

With this in mind, we introduce a modification of BCA that we call H-relative
BCA. It regards H as a blocking subset. If a color-propagation process hits a
page outside H, H-relative BCA treats it as the regular BCA. If, on the other
hand, color wh reaches h ∈ H, the whole amount wh is fully retained by h
without further propagation (it is blocked). Hub H serves as a bank of paint that
accumulates color in h-saving accounts to handle it later. We split the result of
the blocked propagation into two terms. The first term, u, called the H-relative
BCV, is the color amounts propagated to non-hub pages G \ H extended to H
by zeroes, u|H = 0. The second term, s = {sh, h ∈ H}, is the color blocked by
H. Mathematicians would call H-relative BCA a modulo H algorithm. Using
notation [u, s] = BCA(b, a |H ) = BC(b, 1, a |H ) for the relative BCA, we present
it in Algorithm 3.

This algorithm can be implemented via a direct access transaction queue Q
similar to the base BCA. We skip the obvious details. The H-relative BCA is
more effective than the base BCA. First, by the nature of blocking, lesser nodes
are reachable. Thus, a larger H results in a sparser u. Second, the blocked
version is also significantly faster: a queue Q is not filled whenever a hub page

Algorithm 3. ([u, s] = BC(b, w,α |H ) Conceptual H-Relative BCA.)
Input: A page b, a color amount w, a retention coefficient α, and a hub H.
Output: H-relative BCV u and blocked s.
begin

u = 0, s = 0
if b ∈ H then

sb = sb + w
end
else

ub = α · w
if stopping criterion is met or deg(b) = 0 then

return [u, s]
end
for all links i→ j ∈ L do

[u, s] = [u, s] + BC(j, (1− α) · w/deg(b),α |H )
end

end
return [u, s]

end



Berkhin: Bookmark-Coloring Algorithm for Personalized PageRank Computing 51

h is encountered. The following simple but powerful fact generalizes the basic
recursive relation (3.1). It states that the full BCV p can be reconstructed from
its H-relative BCA counterparts.

Theorem 4.1. (BCV Hub Decomposition.) If p = p(b) = BCA(b,α) and [u, s] =
BCA(b,α |H ), then

pi = ui +
∑

h∈H

r(h)
i · sh. (4.1)

Proof. Notice that each h ∈ H knows how to distribute color from h—this is what
the r(h) are about. Therefore, to reconstruct p all we need to know is how much
color gets to each h ∈ H (this is s) and where the color that has not hit H on
its way landed (this is u). Equation (4.1) can be expressed in a vector form

p = u + R · s, (4.2)

where the matrix R =
(
r(h)
i

)
, i ∈ G,h ∈ H, has basis BCVs as its columns,

dim(R) = n × N , u is zero on H and is sparser than p, dim(u) = n, and
dim(s) = N .

By skipping sh below certain threshold η, the H-relative BCV can be computed
with low accuracy very fast.

4.2. Motivational Example

So far we have provided a formal treatment of BCA and relative BCA. Now we
want to explain why this actually works using an analogy with air traffic over a
world travel graph. BCA computes authority of each airport given that traffic
originates in a particular node. Assume that we start with b corresponding to
Houston, TX. Obviously, many passengers go to Chicago and New York. Due to
vacation destinations and business affiliations, some traffic lands in Hawaii and
Düsseldorf. However, very few people consistently go from Houston to Ukraine or
Tibet. From a business standpoint such rare destinations do not matter. They do
matter, however, for traffic originating in Moscow or Beijing. PageRank iterates
(teleporting to Houston) until all magnitudes including those of O’Hara or JFK
are sufficiently converged. Unfortunately, these two important nodes are treated
by PageRank absolutely equivalently to any obscure landing field in Ukraine or
Tibet! Meanwhile, BCA keeps its focus and produces a sparse solution.

When traveling from Houston to Düsseldorf, travelers most probably land in
two major Germany hubs, Munich or Frankfurt. Obviously, in thinking about
traffic from Houston, it would be very useful to know in advance and reuse



52 Internet Mathematics

traffic distributions corresponding to hubs, since these are the airports where
most people make their connections. Such modulo hubs computation is what
H-relative BCA does.

5. Efficient Hub Computing

As we have shown, knowledge of basis BCVs r(h), h ∈ H, enables effective com-
putation of p(b) for b /∈ H via H-relative BCA. Equation (4.2) assumes that
matrix R, whose columns are full basis BCVs, is available. Also, we may simply
use linear combinations of R’s columns with some coefficients that are exter-
nally supplied (e.g., from user profiles). In either case, matrix R is important.
However, its effective computing and maintenance present two challenges: (1)
computing very many basis BCVs r(h) is not cheap and (2) fetching basis vectors
r(h) in memory is I/O bound.

We show in this section how finding a set of N basis vectors r(h) can be
shortened by their cooperative computing and how they can be simultaneously
compressed! This compressed form can be encoded and accessed during the I/O
stage. In effect, at the cost of one extra multiplication by a N ×N matrix, we
buy effective computing and encoding. We achieve this by a careful analysis of
H-relative BCA.

5.1. Hub Equation

Until now we assumed that b /∈ H. If b ∈ H, H-relative BCA stops right away
with the trivial solution u = 0, s = δ(b). Consider a simple generalization of
the H-relative propagation model: at the first propagation step from b = h, we
retain the α of the initial w = 1 color amount assigning it to the h-component of
r(h) and distribute the remaining 1− α part over the out-links. Corresponding
out-neighbors may include both H and non-H pages. From this moment on, we
revert to the regular H-relative BCA: w propagates over nodes outside H or get
blocked by nodes within H. For any b ∈ H and i ∈ G, we get an analog of (4.1):

r(b)
i = αδ(b)

i + u(b)
i +

∑

h∈H

r(h)
i · s(b)

h . (5.1)

In this formula the δ-term comes from the very first step, u(b) are H-relative
vectors, u|H = 0, and s(b) are blocked weights. We have come to the following

Theorem 5.1. (Hub Equation.)
R = αIn×N + U + R · S. (5.2)



Berkhin: Bookmark-Coloring Algorithm for Personalized PageRank Computing 53

Here, R = R(H) is a matrix of basis BCVs columns, and dim(R) = n × N ;
U = U(H) is an H-relative version of R,dim(U) = n×N , and U is zero on rows
i ∈ H; S = S(H) is a blocked component of H-relative BCA, and dim(S) =
N ×N .

What are the implications of equation (5.2)? First, U is much sparser than the
original R and can be kept in encoded (compressed) form. Second, computing a
pair [U, S] is faster than computing a full R, as is the case with any H-relative
computing. Solving system (5.2) provides a way to restore R from its cheap and
sparse counterparts. Since

R · (IN×N − S) = αIn×N + U,

we have
R = (αIn×N + U) · (IN×N − S)−1 = (αIn×N + U) · K, (5.3)

where K = (IN×N −S)−1 is the N ×N inverse to a diagonally dominant matrix
IN×N−S. In practice, the following geometric power series approximation works
fine

K = IN×N + S + S2 + · · · + Sk + · · · . (5.4)

If we only want to use linear combinations of r(h), we are done. If we desire
to find p = p(b) for b /∈ H, then combining (4.2) and (5.3), we get

p = u + R · s = u + (αIn×N + U) · K · s. (5.5)

In other words, instead of fetching in the core longer columns of R as required
by (4.2), I/O can be limited to much smaller columns of U (stored in encoded
form) as required by (5.5). Matrix K can be kept in core memory. In addition,
the precomputing of relative data [U, S] is faster than that of the original R.
These improvements come with the price tag of an extra multiplication by K.
As always, some accuracy is lost on the way.

5.2. Hub Selection

Now we confront the problem of hub selection. Computing BCV p for a single
b would strongly benefit if the hub H contains h∗ = arg maxh,h'=b

{
p(b)

h

}
, since

this is the page where most color (except of page b itself) has gone and so it
is strongly “looped.” Averaging over all b ∈ G, we are interested in a page h
delivering a maximum to the average of all BCVs p(b). But in view of linearity,
the average of all BCVs is the PageRank vector corresponding to a teleportation
v that is the average of all δ(b), and this is simply the uniform teleportation
vector. We come to an interesting observation: should we only consider a single-
page hub H, we should select it as a page that delivers the maximum to a uniform



54 Internet Mathematics

Algorithm 4. (Hub Selection.)
H = 0
for m = 1, 2, . . . do

[u(m), s(m)] = BCA(B,W,α, |H )
h∗ = arg maxh,h/∈H

{
u(m)

h

}

H ← H
⋃
{h}

end

PageRank. By the same token, for N = |H| > 1, we may nominate to the hub
the top-N uniform PageRank pages. Two problems undermine this reasoning.

First, not every web page serves uniformly probably as a bookmark. This
is quite a generic problem with uniform teleportation. For example, people
also do not start new sessions on a uniformly random page and, thus, uni-
form teleportation is unsatisfactory from a random surfer model point of view
as well.

Second, two pages may be perfectly fit in terms of cutting loops, but they may
be “correlated” in the sense that they may cut mostly common loops. Including
one after another does not lead to a significant improvement. This attribute
selection problem is also generic, for example, in the context of variable selection
in statistics and data mining.

With the first problem, we may restrict ourselves to a set of, say, 10K “re-
alistic” bookmarks B. We will not elaborate here on the heuristics of how to
construct B and will use identical weights, W = {1/ |B| , . . . , 1/ |B|}. Regarding
the second problem, consider näıve greedy Algorithm 4. This algorithm takes
care of a correlation between already selected pages H and a new incoming
page h. Realisticaly, more than a single h may be selected at each step and
forward/backward passes may be added.

5.3. Loop Factor and Virtual Hub

Now, when we have investigated a concept of hub, it is natural to suggest that
even in the absence of a hub, the originating bookmark b itself can be consid-
ered as a perfect single-page hub. This simple device further speeds up BCV
computing.

Imagine that during the process of color propagation started at page b, we
hit page b again. This means that the whole process mirrors itself, since all the
operations done with the originally injected color have to be repeated with the
newly arrived color. The reason it does not go on forever is that the process starts
with w = 1 and hits b again with a smaller w. Since we only propagate w above



Berkhin: Bookmark-Coloring Algorithm for Personalized PageRank Computing 55

a certain threshold, the process eventually stops. In experiments, originating
bookmarks actually get many secondary hits.

We want to speed up the process by cutting down on looping. Let us accu-
mulate the entire color amount s that ever returns to b after the very first step
instead of propagating it again and again in a mirror fashion. Geometrically
this means that we cut the loops coming back to b. This is why we call s a
loop factor. Let p′ represent the vector computed by only propagating the initial
color (w = 1) and holding (not propagating) the color s that returns to b. In
particular, p′b = α. The accumulated amount s needs the same processing as
the original w = 1. Thus, p(b) = p′ + s · p(b) and we get

p(b) = p′/(1− s). (5.6)

A loop factor can be found from a simple formula p(b)
b = α/(1 − s). Equation

(5.6) is similar to (5.3), where 1/(1− s) plays the role of (IN×N − S)−1.
Now we briefly review another idea. If it is beneficial to cut b-loops, it may be

beneficial to cut other loops as well. This is exactly what the hub framework is
designed to do. But, a hub is an external entity that is not specific to b. With
or without it, we may try to add some b-specific pages to a hub. It is natural
to call a so-assembled set a virtual hub. Assume for simplicity that there is no
external hub. When dealing with the loop factor, we efficiently utilized a trivial
hub H = {b} to cut b-loops. Going a step further, imagine that some reasonable
hub H (depending on b) is assembled, h1 = b. Then, equations similar to (5.1)
hold for corresponding basis vectors r(h), p(b) = r(h1) = BCA(b,α):

r(h) = w(h) +
∑

q∈H

r(q) · s(h)
q , h ∈ H. (5.7)

The only difference is that in equation (5.1) each u(b) was zero on H and only the
diagonal α-term was nonzero on H, while in (5.7) we combined them together,
since H actually evolves during the computation and more than an α-fraction
of color could be accumulated on hub pages. This means that a BCV p(b) =
BCA(b,α) can be found as the first column in the linear system (5.7). Here is
how it works. We start propagating from b as usual, blocking only b-color. At
some moment we add a new h to H and from now on we block also h-color. The
larger H grows, the more color is blocked (more loops are cut). The nontrivial
questions are (1) why all this would be faster than the regular BCA and (2) how
to assemble a virtual hub H.

The first question looks puzzling. To find a single p(b), we suggest finding N
different w(h) plus S! However, things are not as gloomy. Only for the first h1 = b
relative BCA pair [w(b), s(b)] has to be found with the input tolerance ε. The



56 Internet Mathematics

ε = 1.e-10 ε = 1.e-8
Time Support Error Time Support Error

120 945381 2.2e-6 17 184416 4.3e-5
80 645723 1.17e-6 8 118195 2.12e-5
128 93565 1.61e-6 14 244735 2.83e-5
93 811069 7.77e-7 12 195094 1.45e-5
37 340027 4.04e-7 3 34010 5.50e-6
189 1299458 1.82e-6 25 378099 3.93e-5
198 1306594 1.77e-6 30 517603 6.94e-5
52 670617 8.30e-7 5 111380 1.02e-5
38 331877 2.26e-6 5 307651 1.74e-4
23 356062 1.42e-6 3 310175 9.60e-5
40 336028 2.45e-6 5 307690 1.91e-4
68 573814 1.24e-6 10 141057 6.38e-5
66 547160 1.27e-6 8 107618 5.38e-5
32 229158 4.73e-7 9 85226 3.69e-5
56 587740 1.15e-6 6 152512 7.78e-5
204 1099815 1.79e-6 33 444004 1.20e-4
95 821543 1.13e-6 11 203706 1.75e-5

Table 1. BCA performance.

rest are needed with lesser accuracy. This, indeed, is how the stopping criterion
works in the absence of any blocking. Here we simply delay some computing by
cutting certain loops with the intent to resolve the introduced uncertainty later
by solving system (5.7). Moreover, important optimizations such as LRU cache
are uniformly applied to the whole process.

Getting to the second question, different strategies of picking H can be con-
templated. We simply assembled statistics about the first 10,000 pops of a queue
Q and nominated the top frequented pages with frequencies above some thresh-
old as a virtual hub H. Different N from 2 to 60 have been tried. Running time
actually decreases, but accuracy may deteriorate in comparison with the vanilla
BCA.

6. Application to Personalization

In this section we discuss application of BCA to a personalized web search. We
would like to start with the clear acknowledgement of the fact that different
meaningful approaches to search personalization coexist. One approach, for
example, starts with the concept of broad “personalizable” queries that have
multiple meanings. We may try guessing a particular meaning from a user profile
or from a current session. Being clearly a personalization, this approach has



Berkhin: Bookmark-Coloring Algorithm for Personalized PageRank Computing 57

many advantages, but it also has problems, such as (a) it is limited to special
queries, (b) it partially intersects with the query disambiguation process, (c) it
relies on a user profile, which is hard to mine, and (d) it can actually shift a
focus contrary to a user’s intent.

In this paper we think of personalization as a process orthogonal to the busi-
ness of query disambiguation. We also do not analyze user profiles. We simply
assume that some important bookmark pages are either mined from user profile
data or explicitly specified by a user via some appropriate UI. Along with [Jeh
and Widom 02], we concentrate on the problem of utilizing this user-specific data.
Notice, in this regard, that different topics as well as nontopical user attributes
such as gender or preferences can be well represented by sets of bookmarks. This
makes our approach very flexible. For example, it allows personalizing queries
not through their extensions, but through certain user-specific contexts, i.e., a
query “free trade” may be personalized by a user’s political orientation, and
a query “history” may be personalized by a user’s interest in the topic “com-
puters and algorithms.” The suggested bookmark-based personalization process
consists of the following steps:

1. We choose a hub web subset H (see Section 5.2). We experimented with
N = |H| equal to 103–104 pages.

2. For each h relative [u(h), s(h)] = BCA(h,α |H ) are computed as described
in Section 5.1, full matrices U and S are assembled, and U is stored on
disk in a compressed encoded form.

3. A particular user model (we used explicit nomination) supplies some book-
marks B = {b1, . . . , bk} and weights W = {w1, . . . , wk}.

4. The H-relative algorithm is run: [u, s] = BCA(B,W,α |H ). It uses a sim-
ple modification, described in Section 3.2, in which a queue Q is initiated
with several bookmarks and weights. Small coefficients sh are pruned.

5. The vector p is generated according to formula (5.5), which requires fetch-
ing sparse columns of matrix U and performing the multiplication by K ·s.
Vector p is used as a ranking feature.

Introduced personalization has many advantages: (1) User can try different
bookmarks on-line. Potentially, a user can play with a variety of personas.
Linearity allows for their blending. (2) Computed objects u, s are reusable (they
are, so to speak, “personalization cookies”). In principle, such sparse objects can
be stored on a user’s desktop, which may have an advantage from privacy point
perspective. (3) Teleportation-specific BCV constitutes only a single relevancy



58 Internet Mathematics

Support Pops Gets Adds Saving in %

150418 418460 262144 5947802 93.00
325849 784809 425984 7357943 89.30
118333 332889 196608 4811865 93.10
63050 189842 98304 3605833 94.70
450889 1323793 851968 15946446 91.70
128595 362638 229376 3050021 88.10

563 11885 <32000 <32000 ——
116807 490712 360448 8969216 94.50

Table 2. Queue optimization.

feature. It can be blended (rank aggregation) with overall search ranking in
many meaningful fashions. (4) The whole business of query disambiguation is
left aside, and therefore, we deal with a well-confined component that may be
combined with any other personalization processes.

7. Numerical Experiments

We would like to reflect first that BCA is much faster than page-specific Page-
Rank. For example, on the AltaVista Connectivity Server with a web graph of
n ≈ 1.1 · 109 pages and approximately 6.4 · 109 hyperlinks, it takes around two
hours to run simple power iterations for page-specific PageRank, optimized and
distributed over eight machines, to achieve between the iterations an accuracy
of 1.e-6 in the L1-norm. It takes around three minutes to run optimized BCA
on a single machine with ε = 1.e-9. Numerical study of BCA on a large web
data is underway and will be reported separately. In this section we provide
results related to testing different flavors of BCA on a small subgraph obtained
from core 4500 ODP pages corresponding to several broad topics via depth-five
crawling. The resulting graph of 25M pages was pruned to 3,131,099 pages by
several rounds of deleting the dangling pages.

We start presenting in Table 1 the results for the vanilla (nonrelative, no
caching, no queue optimization) BCA: for several randomly chosen pages we
computed BCV with ε = 1.e-10 and ε = 1.e-8 and α = 0.1. We report run
time, support (number on nonzero pages), and error defined to be the maximum
deviate from a page-specific PRV computed with L1 accuracy 1.e-9. This table
demonstrates that BCA is fast and that the resulting BCV is sparse.

To study the effects of queue Q optimization, we assembled statistics related
to the usage of a directly accessed, periodically partially sorted queue (see Sec-
tion 3.2). Our findings for some randomly selected bookmarks are presented in



Berkhin: Bookmark-Coloring Algorithm for Personalized PageRank Computing 59

TIME Hit Ratio in %
No Cache 50K 100K 200K 50K 100K 200K

453 114 41 40 80.54 92.04 92.04
641 539 119 73 26.95 89.28 93.30
467 29 38 27 95.09 95.09 95.09
31 8 10 8 94.03 94.03 94.03

3526 3169 1465 183 11.82 63.87 93.80
146 17 18 17 94.65 94.65 94.65
2 1 2 1 98.19 98.19 98.19

5163 864 134 134 82.95 95.25 95.25

Table 3. Effects of LRU caching.

Table 2. It shows results for BCV computing with α = 0.1 and ε = 1.e-7. A loop
factor was used. The Support column contains the number of nonzero pages.
The Pops column contains the number of queue pops (that are main elements of
the BCA iterative process). The Gets column is equal to the number of actual
different pages for which link data has been requested from a connectivity server.
There are two reasons for the number of gets to be smaller than the number of
pops: (1) after some pops we have w below a threshold, and so link information
for further propagation is not requested; (2) one and the same page sometimes
gets reinstated in queue, each time resulting in an extra pop. The Adds col-
umn shows the number of formal adds to a queue; some of them are handled
as updates (delayed computing) to currently present transactions, and some are
actual adds (pops). The Saving column is equal to the percent of formal adds
that were resolved as updates rather than as actual adds. We see that queue
optimization is very effective.

Next, we demonstrate the results of LRU caching of link data. With a cache
of size 50K, 100K, and 200K, we get improvements presented in Table 3. We
used α = 0.1 and ε = 1.e-8. In the No Cache column we give run times when
no caching was artificially enforced. The next columns present run times and
hit ratios (percentages of times when a requested link data resides in the cache).
We see that caching leads to a significant improvement.

To investigate the difference between full and H-relative BCA, we used the
same pages as in Table 1 and computed full and relative versions of BCV with
α = 0.1 and ε = 1.e-10. Parameter η introduced at the end of Section 4.1 was
set equal to ε. This allows corrections in (4.1) only when sh > η. N = 1000 was
used. Run times for full and relative BCA versions, support sizes, and maximum
difference between the full and corrected relative versions of corresponding BCVs
are presented in Table 4. On average, H-relative BCA is 5.4 times faster than
full regular BCA. It also generates 6.5 times sparser vectors.



60 Internet Mathematics

ε = 1.e-10
BCA H-rel. BCA

Time Support Time Support Diff.

120 945381 18 170336 1.36e-5
80 645723 2 37473 7.22e-06
128 993565 54 532353 4.81e-06
93 811069 62 588109 8.02e-07
37 340027 26 240048 2.04e-07
189 1299458 33 477225 2.57e-05
198 1306594 10 180824 3.98e-05
52 670617 0 17 5.49e-06
38 331877 0 238 4.59e-06
23 356062 1 959 3.75e-05
40 336028 0 224 2.35e-06
68 573814 23 307307 2.88e-05
66 547160 29 319253 1.20e-05
32 229158 5 45458 1.91e-05
56 587740 15 242261 3.09e-05
204 1099815 1 12096 9.24e-05
95 821543 10 158098 1.43e-05

Table 4. Comparison of BCA and H-relative BCA.

Convergence of a power series (5.4) to K is very fast. In the first eight iterations
we get for elements of a matrix term Sk the following maximum absolute values
M(k): M(04) = 6.6e-1, M(08) = 4.3e-01, M(16) = 1.8e-1, M(32) = 3.4e-2,
M(64) = 1.2e-3, M(128)= 1.4e-6, M(256) = 1.9e-12.

Acknowledgements. We thank Qi Lu for bringing our attention to the problem, Byron
Dom and Farzin Maghoul for discussions, Josh Coalson for helping with numerical
implementation, and Michael Potts for careful editing.

References

[Abiteboul et al. 03] Serge Abiteboul, Mihai Preda, and Gregory Cobena. “Adaptive
On-Line Page Importance Computation.” In Proceedings of the 12th International
Conference on World Wide Web, pp. 280–290. New York: ACM Press, 2003.

[Arasu et al. 02] Arvind Arasu, Jasmine Novak, Andrew Tomkins, and John Tomlin.
“PageRank Computation and the Structure of the Web: Experiments and Algo-
rithms.” In The Eleventh International World Wide Web Conference Poster Pro-
ceedings, 2002. Available from World Wide Web (http://www2002.org/CDROM/
poster/173.pdf).



Berkhin: Bookmark-Coloring Algorithm for Personalized PageRank Computing 61

[Axelsson 94] Owe Axelsson. Iterative Solution Methods. New York: Cambridge Uni-
versity Press, 1994.

[Brin and Page 98] Sergey Brin and Lawrence Page. “The Anatomy of a Large-Scale
Hypertextual Web Search Engine.” Computer Networks and ISDN Systems 33
(1998), 107–117.

[Chakrabarti et al. 98] Soumen Chakrabarti, Byron Dom, Prabhakar Raghavan, Srid-
har Rajagopalan, David Gibson, and Jon Kleinberg. “Automatic Resource Compi-
lation by Analyzing Hyperlink Structure and Associated Text.” In Proceedings of
the Seventh International Conference on World Wide Web, 1998. Available from
World Wide Web (http://theory.stanford.edu/people/raghavan/www7/181.html).

[Eiron et al. 04] Nadav Eiron, Kevin McCurley, and John Tomlin. “Ranking the Web
Frontier.” In Proceedings of the 13th International Conference on World Wide
Web, pp. 309–318. New York: ACM Press, 2004.

[Gibson et al. 98] David Gibson, Jon Kleinberg, and Prabhakar Raghavan. “Inferring
Web Communities from Link Topology.” In Proceedings of the Ninth ACM Con-
ference on Hypertext and Hypermedia, pp. 225–234. New York: ACM Press, 1998.

[Golub and Loan 96] Gene H. Golub and Charles F. Van Loan. Matrix Computations,
Third edition. Baltimore: Johns Hopkins University Press, 1996.

[Haveliwala 02] Taher Haveliwala. “Topic-Sensitive PageRank.” In Proceedings of the
11th International Conference on World Wide Web, pp. 517–526. New York: ACM
Press, 2002.

[Haveliwala and Kamvar 03] Taher Haveliwala and Sepandar Kamvar. “The Second
Eigenvalue of the Google Matrix.” Technical report, Stanford University, 2003.

[Haveliwala et al. 03] Taher Haveliwala, Sepandar Kamvar, Dan Klein, Chris Manning,
and Gene Golub. “Computing PageRank using Power Extrapolation.” Technical
report, Stanford University, 2003.

[Jeh and Widom 02] Glen Jeh and Jennifer Widom. “Scaling Personalized Web
Search.” Technical report, Stanford University, 2002.

[Jeh and Widom 03] Glen Jeh and Jennifer Widom. “Scaling Personalized Web
Search.” In Proceedings of the 12th International Conference on World Wide
Web, pp. 271–279. New York: ACM Press, 2003.

[Kamvar et al. 03a] Sepandar Kamvar, Taher Haveliwala, and Gene Golub. “Adap-
tive Methods for the Computation of PageRank.” Technical report, Stanford
University, 2003. Available from World Wide Web (http://citeseer.ist.psu.edu/
kamvar03adaptive.html).

[Kamvar et al. 03b] Sepandar Kamvar, Taher Haveliwala, Christopher Manning, and
Gene Golub. “Exploiting the Block Structure of the Web for Computing
PageRank.” Technical report, Stanford University, 2003. Available from World
Wide Web (http://citeseer.ist.psu.edu/kamvar03exploiting.html).

[Kleinberg 99] Jon Kleinberg. “Authoritative Sources in a Hyperlinked Environment.”
Journal of the ACM 46:5 (1999), 604–632.



62 Internet Mathematics

[Page et al. 98] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd.
“The PageRank Citation Ranking: Bringing Order to the Web.” Technical report,
Stanford University, 1998.

[Richardson and Domingos 02] Mathew Richardson and Pedro Domingos. “The In-
telligent Surfer: Probabilistic Combination of Link and Content Information in
PageRank.” In Advances in Neural Information Processing Systems 14, pp. 1441–
1448. Cambridge, MA: MIT Press, 2002.

[Stewart 99] William J. Stewart. “Numerical Methods for Computing Stationary Dis-
tribution of Finite Irreducible Markov Chains.” Chapter 3 in Advances in Compu-
tational Probability, edited by Winfried Grassmann. Dordrecht: Kluwer Academic
Publishers, 1999.

Pavel Berkhin, Yahoo!, 701 First Avenue, Sunnyvale, CA 94089 (pberkhin@yahoo-
inc.com)

Received March 25, 2005; accepted December 16, 2005.


