Parallel and Distributed Graph Decomposition

Gary Miller (CMU) Richard Peng (Geogia Tech) Adrian Vladu (MIT) Shen Chen Xu (CMU)

In Partial Fulfillment of the CSD Speaking Skills Requirement

Outline

- Graph decomposition.
- Exponential delay algorithm.
- Graph spanners with improved parameters in the parallel and distributed setting.

Graph Decomposition

- Partition graph into smaller components.
- "Well connected" components.
- Different components are "loosely coupled".

Graph Decomposition

- To enable divide and conquer algorithm.
 - Planar separator theorem.
- External memory computations.
 - Minimize disc access.
- Spectral clustering.
 - Cluster of graph => cluster of data.

- Partition of the graph:
 - Each component has small diameter.
 - Few edges between different components.

- Sequential algorithm by Awerbuch:
 - Each cluster has diameter $O\left(\frac{\log n}{\beta}\right)$.
 - β fraction of edges cut.
 - O(m) runtime.

Outline

- Graph decomposition.
- Exponential delay algorithm.
- Graph spanners with improved parameters in the parallel and distributed setting.

Vertex v draws $X_v \sim \text{Exp}(\beta)$

t = 0

t = 2

Exponential Delay Algorithm

- Each vertex v draws $X_v \sim \text{Exp}(\beta)$.
- Each vertex v computes $X_{max} X_v$.
- Each vertex v starts a BFS at time $X_{max} X_v$.
 - Only search unexplored vertices.
- Alternatively: vertex v is assigned to $\operatorname{argmin}_{u} dist(u, v) + X_{u}$

Sequential algorithm by Awerbuch:

- Each cluster has diameter $O\left(\frac{\log n}{\beta}\right)$.
- β fraction of edges cut.

- Our exponential delay algorithm:
 - Each cluster has diameter $O\left(\frac{\log n}{\beta}\right)$ with high probability.
 - β fraction of edges cut *in expectation*.

- Our exponential delay algorithm:
 - Each cluster has diameter $O\left(\frac{\log n}{\beta}\right)$ with high probability.
 - β fraction of edges cut *in expectation*.

Exponential Delay Algorithm

- Each vertex v draws $X_v \sim \text{Exp}(\beta)$.
- Each vertex v computes $X_{max} X_v$.
- Each vertex v starts a BFS at time $X_{max} X_v$.
 - Only search unexplored vertices.

The search has at most X_{max} levels!

Exponential Distribution

- Parmeter β
- Density function:

$$f(x) = \beta e^{-\beta x}$$

Cumulative function:

$$F(x) = 1 - e^{-\beta x}$$

Bounding X_{max} and Diameter

• By union bound: $\Pr\left[X_{max} > \frac{k \log n}{\beta}\right] \le n^{-(k-1)}$ • Diameter $\le 2X_{max} = O\left(\frac{\log n}{\beta}\right)$ w.h.p.!

- Our exponential delay algorithm:
 - Each cluster has diameter $O\left(\frac{\log n}{\beta}\right)$ with high probability.
 - β fraction of edges cut *in expectation*.

Exponential Distribution

- Memoryless property: Pr(X > s + t | X > s) = Pr(X > t)
- Discrete analogue: geometric distribution.
 - Flipped s tails, when will I get a head?

Bounding # Edges Cut

- Bound the cut probability for any edge by β .
- Linearity of expectation => β fraction of edges cut in expectation.

Bounding # Edges Cut

• Arrival time of v at midpoint w:

•
$$dist(v,w) + (X_{max} - X_v)$$

- Edge cut => First two arrivals within 1 unit of time.
- Early arrival <=> (-dist(v, w) + X_v) is large.

 $F(x) = 1 - \exp(-\beta x) \le \beta$

Bounding # Edges Cut

- Each edge is cut with probability at most β .
- Linearity of expectation => β fraction of edges cut in expectation.

Implementation

- Inherently parallel.
- Can be implemented using BFS.
- Use only integer part with random tie breaking.
- Parallel/distributed time: $\tilde{O}\left(\frac{\log n}{\beta}\right)$.
- Work efficient.

Outline

- Graph decomposition.
- Exponential delay algorithm.
- Graph spanners with improved parameters in the parallel and distributed setting.

Spanners

• Given G, a k-spanner H is a subgraph s.t. $dist_H(u, v) \le k \cdot dist_G(u, v)$ for all $u, v \in V(G)$.

Spanners

- Given G, a k-spanner H is a subgraph s.t. $dist_H(u, v) \le k \cdot dist_G(u, v)$ for all $u, v \in V(G)$.
- k is called the stretch factor.
- Goal: given k, find spanner of small size.

Spanners

- $\exists (2k 1)$ -spanner with $\frac{1}{2}n^{1+1/k}$ edges [PS89,ADD+93].
- Tight up to the Erdös girth conjecture.

Spanners via Graph Decomposition

- Set $\beta = \log n / k$.
- Compute a low diameter decomposition.
- Include the spanning forest.
- Each boundary vertex connects to each adjacent cluster.

Spanners via Graph Decomposition

- Set $\beta = \log n / k$.
- Compute a low diameter decomposition.
- Include the spanning forest.
- Each boundary vertex connects to each adjacent cluster.

Bounding Stretch

Stretch bounded by diameter:

- $O(\log n/\beta) = O(k)$ w.h.p.
- $2 \log n/\beta + 1 = 4k + 1$ in expectation.

Bounding Spanner Size

- Goal: $O(n^{1+1/k})$ size.
- |spanning forest| $\leq n 1$.
- Inter-cluster edge:
 - Bound contribution of each vertex.
 - # of cluster intersecting neighborhood.

Contribution of a Vertex

- How many cluster does a neighborhood intersect?
- Previously: how many cluster does an edge intersect?

Bounding Spanner Size

• Let *L* be the # of clusters intersecting the neighborhood.

•
$$E[L] = \sum_{\ell=1}^{\infty} \Pr[L \ge \ell]$$

= $\sum_{\ell=1}^{\infty} (1 - \exp(-2\beta))^{\ell-1}$
= $\frac{1}{1 - (1 - \exp(-2\beta))}$
= $n^{1/k}$

Bounding Spanner Size

- |spanning forest| $\leq n 1$.
- Inter-cluster edge:
 - Contribution per vertex: $n^{1/k}$
- Overall $O(n^{1+1/k})$.

Comparison to Previous Works

Stretch	Expected Size	Work	Parallel/Distributed time	Notes
2k - 1	$\frac{1}{2}n^{1+1/k}$	0(m)	0(m)	[PS98]
2 <i>k</i> – 1	$O(kn^{1+1/k})$	0(km)	$ ilde{O}(k)$	[BS07]
4k + 1	$O(n^{1+1/k})$	0(m)	$ ilde{O}(k)$	New

Other Applications

- Spanners [PS89].
- Low stretch tree metrics/spanning tree [AKPW95, Bar96, FRT03, EEST08, AN12].
- SDD linear system solver [ST04, KMP11, BGK+13, CKM+14].
- Parallel graph connectivity [SDB14].
- Work efficient parallel shortest paths [MPVX15].

Conclusion

- Parallel/distributed low diameter decomposition.
- Memoryless property key to our analysis.
- Parallel and distributed spanners with improved parameters.
- Future direction: spanner for weighted graphs.