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Outline 

• Graph decomposition. 
• Exponential delay algorithm. 
• Graph spanners with improved 

parameters in the parallel and 
distributed setting. 



Graph Decomposition 

• Partition graph into smaller 
components. 

• “Well connected” components. 
• Different components are “loosely 

coupled”. 



Graph Decomposition 

• To enable divide and conquer 
algorithm. 
• Planar separator theorem. 

• External memory computations. 
• Minimize disc access. 

• Spectral clustering. 
• Cluster of graph => cluster of data. 



Low Diameter Decomposition 

• Partition of the graph: 
• Each component has small diameter. 
• Few edges between different 

components. 



Low Diameter Decomposition 

• Sequential algorithm by Awerbuch: 

• Each cluster has diameter 𝑂 log 𝑛
𝛽

. 

• 𝛽 fraction of edges cut. 
• 𝑂(𝑚) runtime. 
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An Example Run [MPX13] 

Vertex 𝑣 draws 𝑋𝑣 ~ Exp(𝛽) 
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Vertex 𝑣 draws 𝑋𝑣 ~ Exp(𝛽) 
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𝑋𝑚𝑚𝑚 = 7 Vertex 𝑣 computes 𝑋𝑚𝑚𝑚 − 𝑋𝑣 



An Example Run [MPX13] 
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Vertex 𝑣 computes 𝑋𝑚𝑚𝑚 − 𝑋𝑣 
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An Example Run [MPX13] 

0 

1 

2 

2 

6 

6 

6 

6 

6 

5 

5 

5 

5 

4 

4 

4 

6 

3 

4 

3 

5 

6 

6 

5 

𝑡 = 4 



Exponential Delay Algorithm 

• Each vertex 𝑣 draws 𝑋𝑣 ~ Exp(𝛽). 
• Each vertex 𝑣 computes 𝑋𝑚𝑚𝑚 − 𝑋𝑣. 
• Each vertex 𝑣 starts a BFS at time 
𝑋𝑚𝑚𝑚 − 𝑋𝑣. 
• Only search unexplored vertices. 

• Alternatively: vertex 𝑣 is assigned to 
argmin𝑢 𝑑𝑑𝑑𝑡 𝑢, 𝑣 + 𝑋𝑢 



Low Diameter Decomposition 

• Sequential algorithm by Awerbuch: 

• Each cluster has diameter 𝑂 log 𝑛
𝛽

. 

• 𝛽 fraction of edges cut. 



Low Diameter Decomposition 

• Our exponential delay algorithm: 

• Each cluster has diameter 𝑂 log 𝑛
𝛽

 with 

high probability. 
• 𝛽 fraction of edges cut in expectation. 
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Exponential Delay Algorithm 

• Each vertex 𝑣 draws 𝑋𝑣 ~ Exp(𝛽). 
• Each vertex 𝑣 computes 𝑋𝑚𝑚𝑚 − 𝑋𝑣. 
• Each vertex 𝑣 starts a BFS at time 
𝑋𝑚𝑚𝑚 − 𝑋𝑣. 
• Only search unexplored vertices. 

The search has at most 
𝑋𝑚𝑚𝑚 levels! 



Exponential Distribution 

• Parmeter 𝛽 
• Density function: 

𝑓 𝑥 = 𝛽𝑒−𝛽𝑚 
• Cumulative function: 

𝐹 𝑥 = 1 − 𝑒−𝛽𝑚 



Bounding 𝑋𝑚𝑚𝑚 and Diameter 

• By union bound: 

Pr 𝑋𝑚𝑚𝑚 >
𝑘 log𝑛
𝛽

≤ 𝑛− 𝑘−1  

• Diameter ≤ 2𝑋𝑚𝑚𝑚 = 𝑂 log 𝑛
𝛽

 

w.h.p.! 



Low Diameter Decomposition 

• Our exponential delay algorithm: 

• Each cluster has diameter 𝑂 log 𝑛
𝛽

 with 

high probability. 
• 𝛽 fraction of edges cut in expectation. 



Exponential Distribution 

• Memoryless property: 
Pr 𝑋 > 𝑑 + 𝑡 ∣ 𝑋 > 𝑑 = Pr(𝑋 > 𝑡) 

• Discrete analogue: geometric 
distribution. 
• Flipped 𝑑 tails, when will I get a head? 

 



Bounding # Edges Cut 
• Bound the cut probability for any edge by 
𝛽. 

• Linearity of expectation => 𝛽 fraction of 
edges cut in expectation. 



Bounding # Edges Cut 
• Arrival time of 𝑣 at midpoint 𝑤: 

• 𝑑𝑑𝑑𝑡 𝑣,𝑤 + 𝑋𝑚𝑚𝑚 − 𝑋𝑣  

• Edge cut => First two arrivals within 1 
unit of time. 

• Early arrival <=> −𝑑𝑑𝑑𝑡 𝑣,𝑤 + 𝑋𝑣  is 
large. 

𝑤 



Memorylessness 



Memorylessness 1 



Memorylessness 

𝐸𝑥𝐸(𝛽) 

1 



Memorylessness 

𝐸𝑥𝐸(𝛽) 

1 

𝐹 𝑥 = 1 − exp −𝛽𝑥 ≤ 𝛽 



Bounding # Edges Cut 
• Each edge is cut with probability at most 
𝛽. 

• Linearity of expectation => 𝛽 fraction of 
edges cut in expectation. 



Implementation 

• Inherently parallel. 
• Can be implemented using BFS. 
• Use only integer part with random tie 

breaking. 

• Parallel/distributed time: 𝑂� log 𝑛
𝛽

. 

• Work efficient. 



Outline 

• Graph decomposition. 
• Exponential delay algorithm. 
• Graph spanners with improved 

parameters in the parallel and 
distributed setting. 



Spanners 
• Given 𝐺, a 𝑘-spanner 𝐻 is a subgraph s.t. 
𝑑𝑑𝑑𝑡𝐻 𝑢, 𝑣 ≤ 𝑘 ∙ 𝑑𝑑𝑑𝑡𝐺 𝑢, 𝑣  for all 
𝑢, 𝑣 ∈ 𝑉(𝐺). 



Spanners 
3-spanner 



Spanners 
• Given 𝐺, a 𝑘-spanner 𝐻 is a subgraph s.t. 
𝑑𝑑𝑑𝑡𝐻 𝑢, 𝑣 ≤ 𝑘 ∙ 𝑑𝑑𝑑𝑡𝐺 𝑢, 𝑣  for all 
𝑢, 𝑣 ∈ 𝑉(𝐺). 

• 𝑘 is called the stretch factor. 
• Goal: given 𝑘, find spanner of small size. 
 



Spanners 

• ∃ 2𝑘 − 1 -spanner with 1
2
𝑛1+1/𝑘 edges 

[PS89,ADD+93]. 
• Tight up to the Erdös girth conjecture. 



Spanners via Graph 
Decomposition 
• Set 𝛽 = log𝑛 /𝑘. 
• Compute a low diameter decomposition. 
• Include the spanning forest. 
• Each boundary vertex connects to each 

adjacent cluster. 
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An Example Run [MPVX15] 



Bounding Stretch 
• Stretch bounded by diameter: 

• 𝑂 log𝑛 𝛽⁄ = 𝑂(𝑘) w.h.p. 
• 2 log𝑛 𝛽⁄ + 1 = 4𝑘 + 1 in expectation. 



Bounding Spanner Size 

• Goal: 𝑂(𝑛1+1/𝑘) size. 
• |spanning forest| ≤ 𝑛 − 1. 
• Inter-cluster edge: 

• Bound contribution of each vertex. 
• # of cluster intersecting neighborhood. 



Contribution of a Vertex 
• How many cluster does a neighborhood 

intersect? 
• Previously: how many cluster does an edge 

intersect? 

VS 



Memorylessness 

𝐸𝑥𝐸(𝛽) 

𝐹 𝑥 = 1 − exp −2𝛽 −3 

2 



Bounding Spanner Size 

• Let 𝐿 be the # of clusters intersecting 
the neighborhood. 

• E 𝐿 = ∑ Pr[𝐿 ≥ ℓ]∞
ℓ=1  

            = ∑ 1 − exp −2𝛽 ℓ−1∞
ℓ=1  

            = 1
1− 1−exp −2𝛽

 

            = 𝑛1/𝑘 



Bounding Spanner Size 

• |spanning forest| ≤ 𝑛 − 1. 
• Inter-cluster edge: 

• Contribution per vertex: 𝑛1/𝑘 

•Overall 𝑂(𝑛1+1/𝑘). 



Comparison to Previous Works 

Stretch Expected Size Work Parallel/Distributed 
time Notes 

2𝑘 − 1 
1
2 𝑛

1+1/𝑘 𝑂(𝑚) 𝑂(𝑚) [PS98] 

2𝑘 − 1 𝑂(𝑘𝑛1+1/𝑘) 𝑂 𝑘𝑚  𝑂�(𝑘) [BS07] 

4𝑘 + 1 𝑂(𝑛1+1/𝑘) 𝑂(𝑚) 𝑂�(𝑘) New 



Other Applications 
• Spanners [PS89]. 
• Low stretch tree metrics/spanning tree 

[AKPW95, Bar96, FRT03, EEST08, AN12]. 
• SDD linear system solver [ST04, KMP11, 

BGK+13, CKM+14]. 
• Parallel graph connectivity [SDB14]. 
• Work efficient parallel shortest paths 

[MPVX15]. 



Conclusion 
• Parallel/distributed low diameter 

decomposition. 
• Memoryless property key to our analysis. 
• Parallel and distributed spanners with 

improved parameters. 
• Future direction: spanner for weighted 

graphs. 
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