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Personal PageRank and Spilling Paint

Daniel A. Spielman October 7, 2010

11.1 Overview

• These lecture notes are not complete.

• The paint spilling metaphor is due to Berkhin [Ber06].

11.2 PageRank

We have all encountered the PageRank algorithm: it is how Google got started ranking web pages.
It involves random walks in directed graphs. We are going to talk more about random walks in
directed graphs in a later lecture. But, I need to give you the introduction now.

PageRank considers a process that with probability ↵ jumps to a uniformly random vertex of a
graph, and with probability 1� ↵ follows a random edge out of the present node. The PageRank
vector is the steady-state distributuion of this process. That is, if we let W be the walk matrix of
the directed graph (you can figure out how to define it), the PageRank vector p will satisfy

p = ↵
1

n
1+ (1� ↵)Wp.

We are going to consider a variation of the PageRank vector called the personal PageRank vector.
Where PageRank measures the importance of nodes overall, the personal PageRank vector measures
the importance of nodes with respect to a give node u. It does this by modifying the walk so that
with probability ↵ it jumps back to u, rather than to a random node. We denote the vector that
satisfies this equation by pu, and note that it must satisfy the equation

pu = ↵�u + (1� ↵)Wp,

where �u is the elementary unit vector in the direction of vertex u.

For today, we will just consider these vectors in undirected graphs.

Let’s begin by showing that the vectors pu actuall exist. By maniuplating the equation for pu, we
derive

pu � (1� ↵)Wpu = ↵�u

[I � (1� ↵)W ]pu = ↵�u

pu = [I � (1� ↵)W ]�1 ↵�u.
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Before we write this, we should be sure that that the inverse exists. We know that it does because
all eigenvalues of W lie between �1 and 1, so all eigenvalues of I � (1� ↵)W are at least ↵.

11.3 Spilling Paint in a Graph

Just as ordinary random walks were related to a di↵usion process, the PageRank random walks are
as well. However, we should think of this di↵usion process as di↵using paint in a graph. The main
characterisic of paint is that it dries.

In our model, we will say that at every time step an ↵ fraction of the paint at each vertex dries in
place. As for the wet paint, we assume that half stays where it is and the other half is distributed
equally among its neighbors. So, we will need to keep track of two quantities, the amount of wet
paint and the amount of dried paint. We will let s : V ! IR�0 be the vector the records how much
paint has become stuck at each vertex, and we will let r : V ! IR�0 indicate how much wet paint
remains at each vertex. At time zero, we set r0 = �u. These vectors now evolve according to the
equations

st+1 = st + ↵r t

r t+1 = (1� ↵)cWr t.

We will be interested in where the paint is stuck in the end. We could denote this by s1. We
derive the following equation for s1:

s1 = ↵
X

t�0

r t = ↵
X

t�0

(1� ↵)t cW
t
r0 = ↵

X

t�0

(1� ↵)t cW
t
�u.

We will now see that this is the same equation that the personal PageRank vector satisfies, up to
scaling and with a slightly di↵erent ↵. The reason for the di↵erent ↵ is that here we used the lazy
walk matrix, whereas in personal PageRank we used the ordinary walk matrix. We will use a fact
that is just as true of diagonalizable matrices as it is of real numbers:

(I �X )�1 = I +X +X 2 +X 3 + · · · ,

provided that all eigenvalues of X have absolute value less than 1.

So,

pu = ↵
X

t�0

(1� ↵)tW t�u.

To see that the di↵erence between using W and cW is just a change in ↵, consider the equation
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which we now know s1 satisfies:

s1 = ↵
⇣
I � (1� ↵)cW

⌘�1
�u

= ↵

✓
1 + ↵

2
I � 1� ↵

2
W

◆�1

�u

=
2↵

1 + ↵

✓
I � 1� ↵

1 + ↵
W

◆�1

�u

= � (I � (1� �)W )�1 �u,

where

� =
2↵

1 + ↵
.

11.4 Local Updates

From the discussion so far, we can see two obvious ways of computing the vectors pu: either by
solving a linear system or by simulating the paint di↵usion process. It turns out that there is a very
nice way of simulating the paint di↵usion process. It does not need to be done globally through the
equations we derived. Rather, we can arbitrarily pick vertices of the graph, proclaim an ↵ fraction
of the wet paint at those vertices dry, and then push the wet paint to neighbors as appropriate.

That is, we can ignore time, and do this by a completely asynchronous process. Since we will ignore
time, let s be the vector of dried paint and let r be the vector of wet paint. Let’s denote by ps,r

the vector that we will eventually compute:

ps,r = s + ↵
X

t�0

(1� ↵)tW tr = s + ↵ (I � (1� ↵)W )�1 r .

Remark I’m changing from lazy to ordinary walk here as we know it won’t make any di↵erence,
and it saves ink.

I am claiming that we can now update s and r as follows. Pick an arbitrary vertex u. Now, create
the new vectors s 0 and r 0 by the rules

s 0(u) = s(u) + ↵r(u)

p 0(u) = 0

p 0(v) = p(v) +
1� ↵

d(u)
p(u), for every neighbor v of u.

Lemma 11.4.1.

ps 0,r 0 = ps,r .

Proof. In vector notation,

s 0 = s + ↵p(u)�u, and,

r 0 = r � p(u)�(u) + (1� ↵)p(u)W�u.
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So,

ps 0,r 0 = s 0 + ↵
X

t�0

(1� ↵)tW tr 0

= s + ↵p(u)�u + ↵
X

t�0

(1� ↵)tW tr � ↵
X

t�0

(1� ↵)tW tp(u)�u + ↵
X

t�0

(1� ↵)tW t(1� ↵)W�u

= ps,r + ↵p(u)�u � ↵
X

t�0

(1� ↵)tW tp(u)�u + ↵
X

t�0

(1� ↵)tW t(1� ↵)W�u

= ps,r + ↵p(u)

0

@�u +
X

t�1

(1� ↵)tW t�u �
X

t�0

(1� ↵)tW t�u

1

A

= ps,r .

This led to the idea of computing approximate PageRank vectors. The idea behind these is to
always pick the vertex for which r(u) is largest, and then distribute the paint from this vertex.
Once there is very little paint at every vertex, we stop the process. In particular, we choose some
threshold ✏, and don’t bother to process a vertex if it satisfies

r(u)  ✏d(u).

Under this situation, one can show that the process will stop within 1/✏↵ iterations.

This leads to a very interesting notion of how one should explore a graph. If you asked me 20
years ago how one should explore a graph from a vertex u, I would have given the obvious answer:
“Breadth First Search”. But, for graphs with low diameter, as we now know many are, this is not
so useful. I prefer this way of exploring a graph. We only explore nodes when we process them for
the first time. Still, this can be improved. Unlike in breadth first search, this process could involve
a lot of computation that does not lead to the exploration of new vertices. For example, you can
see this if you simulate it on a path graph.

Question Can we improve on this exploration process in a reasonable way?

One improvement has been provided by Andersen and Peres [AP09]. But, I believe we can do
better.

11.5 Personal PageRank and Conductance

Andersen, Chung and Lang [ACL06] show that we can use personal PageRank vectors to find sets
of low conductance, if we start from a random vector in such a set. Actually, they do this for
approximate personal PageRank vectors. This is particularly nice because the number of vertices
the algorithm touches is actually proportional to the size of the set that it outputs. So, if there is
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a small set of low conductance then the algorithm will run very quickly. This is desirable in very
large graphs.

Their analysis also uses the holistic approach of Lovàsz and Simonovits. I will go through a
simpler analysis that just examines the personal PageRank vector, without the approximation.
This analysis mostly comes from the paper of Andersen and Chung [AC07]

From the vector pv, we derive the vector qv:

qv(u) =
pv(u)

d(u)
.

We now assume without loss of generality that the vertices are numbered so that

qv(1) � qv(2) � · · · � qv(n).

Let Sk then be the set of vertices {1, . . . , k}.

We will now make two observations about the vector qv. The first says that it drops slowly if ↵
is small. The second says that it drops slowly if all of the sets Sj have high conductance. We will
eventually show that if v is chosen at random in a set of small conductance, then qv in unlikely to
drop slowly. Thus, in this case, one of the sets Sj must have low conductance.

Lemma 11.5.1. For every k, X

ik<j

q(i)� q(j)  ↵.

Proof. We have

�T
SWp =

X

(u,v)2E,u2S,v2V

W (u, v)p(v)

=
X

(u,v)2E,u2S,v2S

q(v) +
X

(u,v)2E,u2S,v 62S

q(v)

=
X

v2S
p(v)�

X

(u,v)2E,u 62S,v2S

q(v) +
X

(u,v)2E,u2S,v 62S

q(v)

= �T
Sp �

X

(u,v)2E,u2S,v 62S

q(u)� q(v).

On the other hand,
Wp = (1� ↵)�1 (p � ↵�u) � p � ↵�u,

and so
�T
SWp � �T

Sp � ↵.

Together, these inequalities imply
X

(u,v)2E,u2S,v 62S

q(u)� q(v)  ↵.
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Lemma 11.5.2. If �(Sj) � 2✓, then there exists a k > j such that

d(Sk) � (1 + ✓)d(Sj) and q(k) � q(j)� ↵

✓d(Sj)
.

Proof. Let k be the least integer such that d(Sk) � (1 + ✓)d(Sj). As at least 2✓d(Sj) edges leave
Sj and there are at most ✓d(Sj) sockets between Sj and Sk, we know that at least ✓d(Sj) of the
edges leaving Sj must go past Sk. As q is a decreasing function, this tells us that

X

(a,b)2E:aj,b�k

q(a)� q(b) � ✓d(Sj)(q(j)� q(k)).

The lemma now follows from Lemma 11.5.1, which tells us that this sum is at most ↵.

Lemma 11.5.3. Assume that �(Sj) � 2✓ for all j such that d(Sj)  2m/3. Let h be the least
integer such that d(Sh) � 2m/3. Then, for every i  h

q(h) � q(i)� 2↵

✓2d(Si)
.

Proof. We apply Lemma 11.5.2, starting at i, until we reach a k � h. We then get that

q(h) � q(i)� ↵

✓d(Si)
� ↵

✓(1 + ✓)d(Si)
� ↵

✓(1 + ✓)2d(Si)
· · ·

As

1 +
1

1 + ✓
+

1

(1 + ✓)2
+

1

(1 + ✓)3
+ · · ·  1 + ✓

✓
,

we get

q(h) � q(i)� ↵

✓d(Si)

1 + ✓

✓
� q(i)� 2↵

✓2d(Si)
.

We will show that if v is chosen according to degree inside a set of low conductance, then one of
the sets Sk will probably have low conductance as well, at least for an appropriate choice of ↵. The
parameter ↵ will play the role of the reciprocal of time in a random walk. We begin by pointing
out that if ↵ is su�ciently large, then most of the paint will stay inside a set of low conductance.

For our analysis, we will find it convenient to extend the notion of personal PageRank vectors to
start at a distribution over vertices. So, if aaa is a probability vector, we set

paaa
def
=

X

v

aaa(v)pv.

Lemma 11.5.4. Let S be any set of vertices and let ⇡S be the distribution on S according to degree.
Then

�T
V�Sp⇡S

 �(S)
1 + ↵

↵
.
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Proof. Using the result on the problem set, we gte

�T
V�Sp⇡S

= ↵
X

t�0

(1� ↵)t�T
V�SW

t⇡S

 ↵
X

t�0

(1� ↵)tt�(S)

= ↵�(S)
X

t�0

(1� ↵)tt

= ↵�(S)
1 + ↵

↵2

= �(S)
1 + ↵

↵
.

We will apply this lemma when S is small set of low conductance. In this case, we will see that
most of the mass lies inside S. This tells us that there is a small i for which q(i) is relatively large.
We then use Lemma 11.5.3 to show that q(h) is almost as large as q(i). But, this will give an
absurdity as the total probability mass is at least d(Sh)q(h), which will then be more than 1.

The question is, how large can I force q(i) to be? Assume that we have chosen ↵ so that

�(S)
1 + ↵

↵
< 1/3.

Lemma 11.5.5. There is an i such that d(Si)  d(S) and

q(i) � 2/3

d(Si)H(2m)
,

where

H(2m)
def
=

2mX

j=1

1

j
⇡ ln(2m).

To check this, just assume the opposite and see that it gives q(S) < 2/3.

Now, define � = H(2m). Assume that

d(S)  2m

9�
,

and recall that d(V ) = 2m.

Assume that every set Sj has conductance at least

p
6↵�

def
= ✓.

We then find that

q(h) � q(i)� 2↵

✓2d(Si)
= q(i)� 2↵

6↵�d(Si)
� 2/3

d(Si)�

1

2
=

1

3d(Si)�
.



Lecture 11: October 7, 2010 11-8

This gives

hq(h) � 1

3

2m

3d(Si)�
> 1,

given our assumption on d(S). As this is a contradiction, we know that we must have found a set
Sj of conductance less than ✓, which is approximately

O(
p
�(S) logm).
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