
15-451/651: Design & Analysis of Algorithms January 15, 2019
Introduction to Programming Assignments last changed: January 14, 2020

The programming assignments are meant to help you (a) cement your understanding of the algo-
rithmic concepts you learn in lecture, and (b) ensure that you can translate them into correct and
fast programs. The programs are autograded on a set of test cases, of varying complexity and sizes.
The suite of test cases is intended to push your program to the limits, to make sure it is correct,
it scales, and that it is faithful to other aspects of the specifications. It is important that you have
the concepts right, but also that you pay attention to the details.

This writeup tells you about the submission process, but also has a list of suggestions for how to
debug your programs, and other dos-and-donts for programming assignments. Hope you find it
useful!

1 Submitting to Autolab

When submitting your assignment to Autolab, please create a tar of your solution file that is
named according to the specific assignment name. For purposes of this handout we’ll use a fic-
titious name “permcrusher”. So in this case you would name your submission permcrusher.c,
permcrusher.cpp, Permcrusher.java, permcrusher.ml, or permcrusher.sml. If you need to in-
clude additional files, please ensure they compile according to our rules in the Requirements section,
and then include them in the tar file.

For example, if you are using C for this assignment, then create your tar file with the following
command: tar cvf handin.tar permcrusher.c.

2 Requirements

Your solution should accept input from stdin and write to stdout, in the format described in the
problem statement. (See section 4 for more info on reading and writing to stdin and stdout.)

You can write your solution in any of the following languages:

• C

– Compiled with: gcc -std=c11 permcrusher.c -lm

– Autolab will use gcc version 8.3.1.

• C++

– Compiled with: g++ -std=c++17 permcrusher.cpp -lm

– Autolab will use g++ version 8.3.1.

• Java

– Compiled with: javac -Xlint:unchecked Permcrusher.java

– Autolab will use OpenJDK version 11.0.5.

• OCaml

– Compiled with: ocamlopt permcrusher.ml

1

– Autolab will use OCaml version 4.05.

• SML

– permcrusher.sml should contain a structure called permcrusher.

– The permcrusher structure contain a main function of type string * string list -> int

which will be the entry point to your program.

– The main function should return 0.

– Unless you need to parse command-line arguments or know the name of the program,
those two arguments to main can be ignored.

– Compiled with: ml-build permcrusher.cm permcrusher.main permcrusher

– Executed with: sml @SMLload permcrusher.x86-linux < test_case_input_1.txt

– The permcrusher.cm file will be automatically generated by Autolab, and contain the
following:

Group is

permcrusher.sml

$/basis.cm

– you can test your SML solution on linux.andrew.cmu.edu by creating the .cm file
described above, and compiling and running it as described above.

The time in seconds (and in some cases memory limits) for your program will be specified in the
homework assignment handout. These limits are usually generous enough to accept most reasonable
solutions to the problem.

The homework handout may also ask you to write a short description of your algorithm, and/or
its analysis in a comment at the top of your source file.

3 Autograding

The grader will either compare the output of your program against a reference output or process the
output of your program to verify it is a correct solution. There are often many test cases of varying
size, and some tests for edge cases. Part of your score on a given assignment will be a function of
the number of test cases you pass. (It could be proportional, or all or nothing, depending on the
assignment.)

A class-wide scoreboard is available on Autolab. The time taken for your program to run on each of
the test cases will be measured, and the highest such run-time will be displayed on the scoreboard.
Only your best (fastest by this measure) submission will be displayed. The scoreboard also shows
which language was used. You can make up an anonymous user name for use on the scoreboard.

4 Examples in your Language of Choice

The following examples all read input from stdin for the the fictitious “permcrusher” problem. In
this case the input is a number n followed by n numbers in the range [0, n− 1]. It then prints out
the same information. (In most languages there are many ways to deal with text input and output.
This code just illustrates one way to do it.)

2

5

0 4 1 3 2

4.1 C/C++

#include <stdio.h>

int a[1000000];

int main(){

int i, n;

scanf("%d", &n);

for(i=0;i<n;i++) scanf("%d", &a[i]);

printf("n = %d\n", n);

printf("a = [");

for(i=0;i<n;i++) printf(" %d", a[i]);

printf("]\n");

return 0;

}

4.2 Java

import java.io.*;

import java.util.*;

import java.lang.*;

public class Permcrusher {

static int n;

static int[] A;

public static void main(String[] args) throws IOException {

BufferedReader br = new BufferedReader(new InputStreamReader(System.in));

String line = br.readLine().trim();

n = Integer.parseInt(line);

line = br.readLine().trim();

String[] l = line.split(" ");

A = new int[n];

for(int k = 0; k < l.length; k++) {

A[k] = Integer.parseInt(l[k]);

}

System.out.printf("A = [");

for(int i = 0; i<n; i++) System.out.printf(" %d", A[i]);

System.out.printf("]\n");

}

}

3

4.3 OCaml

open Printf

open Scanf

let read_int _ = bscanf Scanning.stdib " %d " (fun x -> x)

let () =

let n = read_int () in

let a = Array.init n read_int in

printf "n = %d\n" n;

printf "a = [";

for i=0 to n-1 do

printf " %d" a.(i)

done;

printf "]\n"

4.4 SML

structure permcrusher =

struct

fun main (prog_name, args) =

let

val input = TextIO.inputAll TextIO.stdIn

val tokens = String.tokens Char.isSpace input

val _ = print ("Program name: " ^ prog_name ^ "\n")

val _ = print "Arguments:\n"

val _ = map (fn s => print ("\t" ^ s ^ "\n")) args

val n = Option.valOf (Int.fromString (List.hd tokens))

val a = map (Option.valOf o Int.fromString) (List.tl tokens)

val _ = print "The input was:\n"

val _ = print ("n = " ^ (Int.toString n) ^ "\n")

val _ = print ("a = [")

val _ = map (fn x => print (" " ^ (Int.toString x))) a

val _ = print "]\n"

in

0

end

end

4

5 Programming and Debugging Tips

1. Read the problem carefully! Make sure you are solving the correct problem and your output
matches the format specified. Be careful about spelling mistakes, and other trivial formatting
errors in the output.

2. We use diff -wB output correctoutput to compare, but if you have extra lines or other
formatting differences, it may cause problems with the diff.

3. Your program needs to both run within the time limit and have the specified time complexity
for full points.

4. Make sure your idea for the algorithm is in fact correct before debugging your implementation.

5. If we’ve released some test files, please try your algorithm on them. If not, please generate
some test files (both small and large) and test your program. See how slow/fast it runs, and
be sure to test on the example input we give you.

6. If the program times out, use a profiler (or just use print statements) to figure out where your
program is spending all its time. Then speed up the slow part of your program. Similarly, if
your program runs out of memory, think about where you can save on your memory usage.

7. In the case we don’t give you a required time complexity, a good rule of thumb is that
approximately 108 (trivial) operations can be done per second.

8. Some test cases are too large to allocate on the stack, so you should not use operations like
long A[1000000]; within functions/procedures. Instead, please use malloc (or equivalent
operations) to allocate memory.

9. Similarly, avoid implementing algorithms recursively (when possible) to prevent stack overflow
on large test cases, and to speed up execution.

10. (Especially for Java) Allocating fresh arrays and copying over data between arrays is slow,
so consider swapping data in-place to speed things up.

11. To debug compilation issues you have to get into the same environment used by Autolab.
You do that by ssh-ing to unix.andrew.cmu.edu, and trying to compile there.

12. The unix command /usr/bin/time -v a.out < huge_test_case.txt outputs very useful
data about space and time usage. (More useful than just time -v a.out < huge_test_case.in

which just calls the in-built shell command.)

13. Returning a non-zero value upon exiting is a signal that the program failed, so please make
sure your program returns 0 when successful, otherwise Autolab may grade incorrectly. And
if you do get a non-zero exit code, find out what it means. (E.g.: Exit code 139 means core
dumped.)

14. If your program fails, read the Autolab output for why it failed. Information like FINISHED

/ MEM / TIMEOUT / RUNTIME_ERROR can be useful.

15. Consider the size of the numbers that you need to compute over. If they may be bigger than
232 − 1, use long integers.

5

16. For cases with large input/output, avoid using slower forms of I/O (cin/cout, Scanner).

17. You are not allowed to use other people’s code (from the internet or otherwise),
with citations or otherwise. You may not search for solutions to problems, but
you can search for error messages and debugging help.

18. Please don’t just ask the TA’s and Professors for hints. Tell us what you tried, what failed,
and we can try to suggest a way forward.

19. The intended solution should run within the allocated time for every supported language.

5.1 Programming and Debugging Tips for C/C++

1. Please use the -Wall option to turn on warnings. This may tell you things like “your procedure
has no return statement,” etc.

2. Use gdb (or other debuggers) to debug your program. [Tutorial]

3. To get source-level debug info, add the -g flag to gcc. (Ex: gcc -g file.c will allow gdb

to tell you the source line on which your program segfaults.)

4. For C++, know (and use) the STL. If you find yourself re-implementing some very basic
algorithms/data structures, make sure that you actually need to. This pretty much applies
to most of the standard libraries of our languages (except C and SML).

6

	Submitting to Autolab
	Requirements
	Autograding
	Examples in your Language of Choice
	C/C++
	Java
	OCaml
	SML

	Programming and Debugging Tips
	Programming and Debugging Tips for C/C++

