
15-451: Algorithms October 22, 2019

Lecture Notes: Computational Geometry: 2D-LP

Lecturer: Gary Miller Scribes:

1

1 Introduction

1.1 Definitions

Definition 1.1. (Linear Programming) Linear programming (LP) are problems that can be ex-
pressed in canonical form as

max cTx

subject to Ax ≤ d

where A ∈ Rn×m, x ∈ Rm×1, c ∈ Rm×1, and d ∈ Rn×1.

Note that x ≤ y if ∀i, xi ≤ yi.

Definition 1.2. (Feasible) The LP region is feasible if ∃x, Ax ≤ d.

Note that {x|Ax ≤ d} the feasible region is convex.

1.2 2D LP Example

In 2D case, LP is expressed as follows:
a1 b1
a2 b2
...

...
an bn


[
x
y

]
≤


d1
d2
...
dn

 , c =

[
c1
c2

]

1Originally 15-750 notes by Yanzhe Yang and Yao Liu

Figure 1: hi is half-plane normal to (ai, bi)

1



2D LP can be interpreted from geometry view. Firstly, we define Half-plane or Half-space.

hi ≡ {(x, y)|aix+ biy ≤ di}

is Half-plane or Half-space. As shown in Figure 1, hi is half-plane normal to (ai, bi).
From geometric view, the input to 2D LP are:

• Half-planes {h1, h2, ..., hn}

• Vector c ∈ R2

The goal of LP is to find farthest xi in c direction. Here x ∈
⋂n
i=1 hi.

For simplification, we will exclude some corner cases in following discussion.

1. No hi is normal to c

2.
⋂n
i=1 hi is a bounded feasible region

3. ”Bounding” box m1,m2 will be given (shown in figure 2). Note that m1,m2 are half-spaces.

Figure 2: A bounding box is defined by half space m1 and m2.

1.3 1D LP

1D LP can be expressed as

max cx

subject to aix ≤ bi, ai 6= 0

Note that the inputs of 1D LP are constraints aix ≤ bi, ai 6= 0. Without loss of generality, ai = ±1.

Constraints can be grouped as 2 types, C+ and C− (shown in Figure 3).

C+ = {i|x ≤ bi}
C− = {i| − x ≤ bi}, i.e. − bi ≤ x

2



Figure 3: hi is half-plane normal to (ai, bi)

Denote α = max{−bi|i ∈ C−}, β = min{bi|i ∈ C+}.

From Figure 3, we can see a LP region is feasible if and only if α ≤ β. If it is feasible, return

f(n) =

{
c β if sign(c) = 1

c α otherwise

Theorem 1.3. 1D LP is O(n) time.

1.4 Cost

If we look at these computational geometry algorithms, there are two types: one is linear runtime
like selection, and the other is O(n log n) runtime like sorting, convex hull, half-space intersection,
and meshing. What we discussed today, LP in fixed dimensions, lies on the linear runtime side.

We expect LP in fixed dimensions to be linear as it is like selection, which asks for the k largest
elements. Details on runtime analysis is shown in Section 2.2.

O(n log n) O(n)

Sorting Selection
Convex Hull LP(fixed dim)

Half-space Intersection
Meshing

Table 1: Algorithm Costs

3



2 Random Incremental 2D Algorithm

In this section, we will use the 1D linear programming algorithm as an oracle to construct the 2D
linear programming algorithm.

Algorithm 1 2D random incremental LP algorithm

Input: m1,m2, h1, h2, . . . , hn, c
Output: 2D-LP(h1, h2, . . . , hn, c)
1: Step 1: v0 ← 2D-LP(m1, m2, c) (i.e. v0 = CH(m1) ∩ CH(m2))
2: Step 2: Randomly order h1, h2, . . . , hn
3: Step 3:
4: for i = 1 to n do
5: if vi−1 ∈ hi then
6: vi ← vi−1

7: else(Make and solve 1D-LP problem)
8: L ← CH(hi) (Boundary of hi)
9: for j = 1 to i− 1 do

10: h
′
j ← L ∩ hj

11: end for
12: c

′ ← projection(c, L) 2(Note: c
′ 6= 0)

13: vi ← 1D-LP(h
′
1, h

′
2, . . . , h

′
i−1, c

′
)

14: end if
15: if vi is “undefined” then
16: Report “No Solution” and halt
17: end if
18: end for
19: return vn

2.1 Proof of correctness

Claim 2.1. At any time, vi = LP(m1,m2, h1, h2, . . . , hi, c)

Proof. We will do induction on i. The base case is trivial, if we are given the oracle 2D-LP(m1, m2, c),
the optimum is the intersection of the boundaries of m1 and m2.

Assume vi−1 is correct. There are two cases for vi:

Case 1: vi−1 ∈ hi. Then vi−1 is in the feasible region of the new problem. Thus vi−1 is the
optimal solution to the problem.

Case 2: vi−1 /∈ hi. We claim that the solution to the new problem, vi, must be on the boundary of hi,
CH(hi). If not, assume there is an optimal solution opti to the problem LP(m1,m2, h1, h2, . . . , hi, c),
which is not on CH(hi). Since vi−1 /∈ hi and opti ∈ hi, then the line segment connecting vi−1 and
opti must intersect CH(hi) at some point p.
Since vi−1 is the optimal solution without constraint of hi, we have that

cT vi−1 ≥ cT opti
2Here projection is a function mapping a point in 2D space into a line.

4



Figure 4: The line of vi−1 and opti must intersect with CH(hi) at some point p

Then according to the monotonic property of linear function, we have that

cT p ≥ cT opti

which means p ∈ CH(hi) is also an optimal solution. Thus there must be an optimal solution in
CH(hi). Then we solve the linear programming constrained on CH(hi) to get vi. Thus vi has the
optimal value and is feasible.

2.2 Runtime analysis

Claim 2.2. 2D-LP is O(n) expected time.

Proof. We will prove that claim by backward analysis. Suppose we remove hj from h1, h2, . . . , hi.

Definition 2.3. (Critical point) hj is critical if and only if removing it changes optimal solution.

When the optimal solution is an intersection of two boundaries, then the corresponding two con-
straints are critical. If the optimal solution is an intersection of 3 boundaries, then we can verify
that there is at most 2 critical points.

Figure 5: 2 critical constraints

So, there are at most 2 critical constraints. When hj is not critical, we have that vi−1 ∈ hi and
the cost is a constant k. When hj is critical, then the algorithm will solve a 1D LP problem of i
constraints and the cost is i · k. Thus the worst case for Step 3 is exactly 2 critical constraints.

Let Ei be the expected cost of step 3 at time i:

Ei ≤
((

2

i

)
ki+

(
i− 2

i

)
k

)
≤ 3k

5



Figure 6: Left: 1 critical constraint; Right: 0 critical constraint

Thus the total expected work is:
n∑
i=1

3k = O(n)

2.3 Determining Unboundness or Finding the Bounding Box

Lemma 2.4. A LP problem is unbounded if and only if:

1. It is feasible

2. ∃ d s.t. cTd > 0 and Ad ≤ 0

Proof.

(⇐=) By the first condition, there exists x̄ such that Ax̄ ≤ b. Pick any α ≥ 0 and d satisfy-
ing the second condition. Now:

A(x̄ + αd) ≤ αAd +Ax̄ ≤ αAd + b ≤ b

Thus x̄+αd is feasible for any α > 0. The objective cT (x̄+αd) = αcTd+cT x̄ goes to infinity with α.

(=⇒) This can be proved by compactness.

2.3.1 Finding d for unboundedness

Now we are going to derive a method to determine unboundedness and feasibility. When LP is
bounded, we will output the bounding box. When it is unbounded, we need to find out d.

We know that d exist if and only if ∃ d s.t. cTd = 1 and Ad ≤ 0 (figure 7). Note that all
the constraint boundaries cross the origin. By projecting all the constraints to the line cTd = 1, it
is a 1D-LP problem.

Note that there exist d if and only if the 1D-LP has a feasible solution, which means α > β.
Here, α = max{−bi|i ∈ C−}, β = min{bi|i ∈ C+}. (Figure 3)

Claim 2.5. If β > α and Ax ≤ b is feasible, then the LP is unbounded and we can find a d.

6



Figure 7: cTd = 1, Ad ≤ 0

Figure 8: β = α

Claim 2.6. If β = α (shown in figure 8), there are two parallel constraints and Ax ≤ b may be
feasible or infeasible. We need to recover Ax ≤ b to determine the feasibility. When the LP is
feasible it is unbounded and there is exactly one d.

Claim 2.7. If β < α, let hα be the half-plane giving α, and hβ be the half-plane giving β, then
(hα, hβ) is one bounding box.

7


