15-451: Algorithms Sept 17, 2019

Lecture Notes: Introduction to DFS

Lecturer: Gary Miller Scribe:

1 Depth-first search basics

Depth-first search (DFS) is an algorithm for searching the vertices of a graph, that works by
exploring as far into the graph as possible before backtracking. In the following sections, we
consider the problem of searching a directed graph using DFS. An example of a possible DFS is
shown in figure 1. We will periodically refer to this example, a variant of an example from [?]
Section 22.3, throughout the lecture.

G— ©

Figure 1: An example directed graph, G. A possible DFS of this graph would be (v — v — y —
x),(w — z). As we go as far as we can without before backtracking, we would not search an order
such as (u — v — x), as we would in some searching algorithms such as breadth-first search.

1.1 Input

Depth-first search takes as input a directed graph, G = (V, E'), where V is the vertex set and E is
the edge set. For convenience, we suppose we are given some representation of adjacent vertices,
e.g., an adjacency map, that can give us a list representation of the adjacent vertices, adj(v) to a
given vertex, v.

1.2 Colors

It is useful to define the following “colors” for vertices in order to keep track of the state of the
algorithm:

e White: vertices are white before they are discovered.

e Gray: vertices are gray when they are discovered but their outgoing edges are still in the
process of being explored.

e Black: vertices are black when the entire subtree starting at the vertex has been explored.

Let color(u) be the color of vertex w.

!Originally 15-750 notes.



1.3 Events

We also find it useful to maintain a timeline of the search. We keep track of a time at each step,
and the following events:

e disc(u): the time at which we discover vertex u, i.e., the time it becomes gray.

e finish(u): the time at which we finish exploring all edges out of vertex u, i.e., the time it
becomes black.

In our example DFS from figure 1, the events would be as follows:

disc(u) =1 finish(v) =7
disc(v) =2 finish(u) =8
disc(y) =3 disc(w) =9
disc(x) =4 disc(z) =10

finish(x) =5  finish(z) = 11
finish(y) =6  finish(w) = 12

1.4 Algorithm
We define the depth-first search algorithm as follows:

Algorithm 1 Depth-first search
Input: G = (V,E)
Output: DFS(G)
// Initialize the colors to white
Yu € V : color(u) := white
time :=0
for all u € V do
if color(u) = white then
DF S visit(u)
end if
end for

Input: ueV
Output: DF'S visit(u)
color(u) := gray
time := time + 1
disc(u) := time
for all v € adj(u) do
if color(v) = white then
DFS wvisit(v)
end if
end for
color(u) := black
time = time + 1
finish(u) = time




1.5 Run-time

Let |V| = n and |E| = m. We see that we must loop through each vertex in the DFS routine,
which takes at least O(n) time. In DF'S visit, we also loop through all the out edges of u. We do
this for each u € V, thus the total time for this is

O (Z deg(v)) = O(|E|) = O(m),
veV

where deg(V') is the out-degree of v in G. Thus, the total cost must be

O(n +m).

2 Properties of DFS

Now we present some observations about DFS that we will find useful when developing algorithms
based on DFS.

2.1 DPFS forest

We note that a DFS of a graph forms a forest. The forest formed depends on the ordering of the
vertices when we search them. The forest formed by the example DFS from our example in figure
1 is shown in figure 2. We say that a vertex, v, is a descendant of vertex u, with respect to some
DFS search, written v desc w if v is a child of w in the corresponding DFS forest. We note the
following claim:

Claim 2.1. (v desc u) <= (v is discovered when u is gray).

Figure 2: The DFS forest for the example search in figure 1. The edges in the forest are shown as
solid lines — the dotted lines are other edges of the graph that are not part of the forest.

Given a DFS forest of G, we distinguish between four types of edges in the original graph;
namely tree edges (shown as solid lines), back edges (shown as a dotted line), forward edges (shown
as a dashed line), and cross edges (shown as a dashed dotted line). More formally,



2.1.1

Forest edges are those traversed in the DF'S_visit routine.

Back edges are any edge, (u,v), such that u is a descendant of v.

Forward edges are any non-forest edge, (u,v), such that v is a descendant of w.

Cross edges are any other edge. These are the edges that go between subtrees or trees in the

forest.

Color and edge types

When exploring edge, (u,v), u is gray. If v is white, then (u,v) is a tree edge as it will be explored
in DF'S_visit. If v is gray, we must still be searching in a subtree of v, thus v is a descendant of v,
and (u,v) is a back edge. Finally, if v is black, then (u,v) is either a forward or cross edge.

2.2

Times and DFS forest structure

Let int(u) of vertex u, be the interval [disc(u), finish(u)], i.e., the time from the discovery of vertex
u until it is colored black, for a given DFS.

Theorem 2.2. Yu,v € V, exactly one of the following holds:

(1) int(u) and int(v) are disjoint and neither of u and v is a descendant of the other, or

(2) int(u) C int(v) and u is a descendent of v, or int(v) C int(u) and v is a descendent of u.

That is, the interval of u is nested in the interval of v and u is a descendent of v or vice
versa.

Proof. WLOG, assume disc(u) < disc(v).

Case:

Case:

disc(v) < finish(u)
Thus, v was discovered when u was gray, as we know u was started but not finished. Therefore,

v is a descendant of w by claim 2.1. But in our algorithm, the descendants must finish before
their ancestors.

= finish(v) < finish(u)

= int(v) C int(u)

finish(u) < disc(v)

Thus the intervals are disjoint, i.e., int(u) Nint(v) = (). Each vertex is only gray during the
time spanned by its interval, as it is white before it is discovered and black after it is finished.

Thus neither vertex is discovered while the other was gray. Therefore, by claim 2.1, neither
u nor v is the descendant of the other.

O]

2.2.1 More time relationships

Consider edge, (u,v) € E.

(u,v) is a forest or forward edge <= disc(u) < disc(v) < finish(v) < finish(u)
(u,v) is a back edge <= disc(v) < disc(u) < finish(u) < finish(v)

(u,v) is a cross edge <= disc(v) < finish(v) < disc(v) < finish(v)



3 DFS and cycles

Theorem 3.1. Graph, G, has a cycle <= every DFS has a back edge.
Proof. We show this by proving both directions of the equivalence.

(<) A back edge goes from a descendant in a DFS tree to its ancestor. As the descendant must
be reachable from the ancestor, this forms a cycle. Therefore if a DFS has a back edge, G
has a cycle.

(=) Let ¢ = (v1,v2,...,v), be a cycle in G. WLOG, we visit vy first, so disc(v1) < disc(vg). As
vy is a descendant of vy, it must also be the case that finish(vy) < finish(vi), so we have
that disc(v1) < disc(vg) < finish(vg) < finish(vy).

— (vg,v1) is a back edge
Therefore, if G has a cycle, every DFS will have a back edge.
O

Corollary 3.2. If G is a DAG (directed, acyclic graph), and (u,v) € E, then (u,v) cannot be a
back edge, thus finish(v) < finish(u).
4 Topological sorting

Definition 4.1. On a DAG, G = (V,E), an ordering on the vertices of V', v1,vg,...,v,, is a
topological sort if
(Ui,’()j) el =1<].

under-shorts socks watch

pants shoes

belt «—— shirt

jacket «—— tie

Figure 3: An example scenario (from [?] Section 22.4) involving topological sort. Consider the
possible scenario of dependencies when getting dressed, shown in the figure by arrows, e.g., under-
shorts must be put on before pants, and pants must be put on before shoes. A topological sort of
this graph gives a valid ordering of putting on clothes that satisfies the dependencies. For example,
(1) socks, (2) under-shorts, (3) pants, (4) shoes, (5) watch, (6) shirt, (7) belt, (8) tie, (9) jacket,
would be a possible topological sort of the graph.



Theorem 4.2. In a DAG, the reversed finish times of a DFS give a topological sort, i.e.,
(u,v) € E = f(u) > f(v).
Proof. This follows directly from corollary 3.2.

Corollary 4.3. Topological sort can be done in O(n +m) time, as it only requires a DFS.



