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1 The Euler number

The this section we will develop some basic facts by about Euler’s number e. These are notes based
on the book by Dorrie2 which we highly recommend for those more interested in the area.

The important inequality is:

ϕ(x) = (1 +
1

x
)x < e < Φ(x) = (1 +

1

x
)x+1 (1)

for any positive x.
Since

Φ(x) = (1 +
1

x
)ϕ(x)

we see that in the limit as x goes to infinity that Φ(x) = e = φ(x). Thus we have given a definition
of e.

We will prove a slight variant of equation 1 which we will need for this class for x > 1

ϕ(x) = (1− 1

x
)x <

1

e
< Φ(x) = (1− 1

x
)x−1 (2)

Dorrie uses the following inequality whose proof is in his book.

eε < 1 + ε(x− 1) (3)

for x > 0 and 0 < ε < 1. We will use this inequality without proof but if one graphs these two
functions it seem reasonable that it should be true.

Claim 1.1. If a > b > 0 then

(1− 1

b
)b < (1− 1

a
)a

To see this claim we set

x = (1− 1

b
) ε =

b

a

and substitute these values into inequality 3. This gives the inequality

(1− 1

b
)b/a < (1− b

a
(1− 1

b
− 1) = (1− 1

a
)

Now taking the ath power of both sides we get the claim.
To get a bound from above we proof the following claim:

1Originally 15-750 notes by Andre Wei
2100 great problems of elementary mathematics their history and solution
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Claim 1.2. If a > b > 1 then

(1− 1

b
)b−1 > (1− 1

a
)a−1

Here we make the following settings

x = (1− 1

b− 1
) =

b

b− 1
ε =

b− 1

a− 1

From equation 3 we get

(
b

b− 1
)(b−1)/(a−1) < 1 + (

b− 1

a− 1
)(

b

b− 1
− 1) = 1 +

1

a− 1
=

a

a− 1
(4)

Which we can write as

(
b

b− 1
)b−1 < (

a

a− 1
)a−1 (5)

Taking inverses of both sides we get

(
b− 1

b
)b−1 > (

a− 1

a
)a−1 (6)

We can now rewrite inequality 1

ϕ(x) = (1 +
1

x
)x <

1

e
< Φ(x) = (1 +

1

x
)x−1 (7)

for any 1 < x.
Since

(1− 1

x
)Φ(x) = ϕ(x)

we see that in the limit as x goes to infinity that Φ(x) = 1/e = φ(x). Thus we have given a
definition of e.

2 The Exponential Distribution

Definition 2.1. Let Ω be a sample space, a random variable is a mapping X : Ω→ R.

Definition 2.2. The probability density distribution (PDF) of an exponential random variable Xβ

is

Pr[Xβ = µ] =

{
βe−βµ, µ ≥ 0

0, otherwise

Definition 2.3. The culmulutive distribution function (CDF) of Xβ is

Fβ(y) ≡ Pr[Xβ ≤ y]

Fβ(y) =

∫ y

0
βe−βxdx = [−e−βx]y0 = 1− e−βy

Definition 2.4. The expected value of a random variable X is

Ex[X] =

∫ ∞
−∞

yPr[X = y]dy
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Remark 2.5. There are two ways to calculate E[Xβ] for a exponential random variable Xβ

1. By defintion, using integration by parts,

E[Xβ] =

∫ ∞
0

yβe−βydy = 1/β

2.

E[Xβ] =

∫ ∞
0

Pr[Xβ ≥ y]dy =

∫ ∞
0

e−βy = [− 1

β
e−βy]∞0 =

1

β

Proposition 2.6 (Memoryless Property). Given exponential random variable Xβ,

Pr[Xβ > m+ n|Xβ > n] =
e−β(m+n)

e−βn
= e−βm

3 Order Statistics

Definition 3.1. X1, X2, . . . Xn are n i.i.d random variables. The i-th order statistic is

X(i) = selectk(X1, . . . Xk)

i.e.
X(1) ≤ X(2) ≤ . . . ≤ X(n).

Theorem 3.2. Suppose X1, X2, . . . , Xn are i.i.d such that

f(u) = Pr[Xi = u]

and
Fu = Pr[0 ≤ Xi ≤ u].

Then
Pr[X(1) = u] = n(1− F (u))n−1f(u)

Corollary 3.3. If X1, X2, . . . Xn are i.i.d exponentials,

Pr[X(1) = u] = n(e−βu)n−1βe−βu = nβe−nβu

So X(1) ∼ Exp(nβ). Therefore

E(X(1)) =
1

nβ
.

Claim 3.4 (Expectation of X(n)).

X(n) ≈
log n

β

Proof. Let Si = X(i+1) −X(i), for i ≥ 0.
We will need the following sub-claim:

Claim 3.5.
Si ∼ Exp((n− i)β)
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We will prove this claim using the memoryless property. We think of each Xi as a time, say,
the time that the ith light bulb burnt out. Thus at time X(i) i of the bulbs have burnt out and
n − i still lit. Assume that the burnt-out ones are X1, . . . Xi, thus Xj > X(i) for i < j ≤ n. Thus
Si ∼ X(1) but for n− i random variables.

Thus,

E(Si) =
1

(n− i)β
Therefore,

E(X(n)) =

n−1∑
i=0

E[Si] =
1

β
(1 +

1

2
+ . . .

1

n
) =

lnn

β

Proposition 3.6 (Concentration for X(n)).

Pr[Xi ≥
c lnn

β
] = e−c lnn = n−c

By union bound we get,

Pr[Xi ≥
c lnn

β
] ≤ n · n−c =

1

nc−1

Thus,

Pr[Xi ≥
2 lnn

β
] ≤ 1

n

4 Generating Distribution of Random Variables

Problem: Given f : R→ R+, where ∫ ∞
−∞

f(x)dx = 1

Want to find random variable Xf whose PDF is f .

Remark 4.1. It is not clear that the random variable exists. But we can ask if we have one, can
we generate more.

Definition 4.2. Let f, g be PDF’s with random variable Xf , Xg, we say f ≤ g if there exists a
deterministic process D such that Xf = D(Xg).

Example 4.3. Let U be uniform random variable with PDF u, i.e.

u(x) =

{
1, if x ∈ [0, 1],

0, otherwise.

Let U2 be uniform random variable on [0, 2],with PDF u2, then

U2 = 2U =⇒ u2 ≤ u
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4.1 Generating Exponential Distribution from Uniform Distribution

The PDF of an exponential random variable X is

f(X) = βe−βX for 0 < β,X ≥ 0

and

F (X) =

∫ ∞
0

f(X)dX = 1− e−βX

Thus F : [0,∞]→ [0, 1] is one-to-one and onto. We get that F (Xf ) is uniform on [0, 1].
Therefore, u ≤ f , But we want f ≤ u.
Find F−1, i.e. solve for X in Y = F (X) = 1− e−βX

Y = 1− e−βX

⇐⇒ e−βX = 1− Y
⇐⇒ − βX = ln(1− Y )

⇐⇒ X = − 1

β
ln(1− Y )

⇐⇒ X = − 1

β
lnY since 1− Y is uniform on [0, 1]

Thus Xf = 1
β ln(Xu). Thus f ≤ u.

4.2 Generating Normal Distribution from Uniform Distribution

The PDF of a general normal random variable X is

f(X) =
1

σ
√

2π
e−

X2

2σ2

Taking σ = 1, we get Gauss’ unit normal:

f(X) =
1√
2π
e−

X2

2

But it is hard to compute the CDF of X

F (X) =

∫ X

−∞

1√
2π
e−

x2

2 dx

Theorem 4.4. F(X) is not an elementary function.

Remark 4.5. It is OK to compute if f(x) = xe−
x2

2 , as

d

dx
(−e−

x2

2 ) = xe−
x2

2

We consider 2D-normal.

Let f(x, y) =
1

2π
e−

x2

2 e−
y2

2

=
1

2π
e−

x2+y2

2
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In polar,

f(r, θ) =
1

2π
e−

r2

2

Now we can find the cumulative with respect to a disk of radiu r:

D(R) =

∫ R

0

2πr

2π
e−

r2

2 dr = −e−
r2

2 ]R0 = 1− e−
R2

2

Again we compute F−1,

Let y = 1− e−
R2

2

=⇒ e−
R2

2 = 1− y

=⇒ −R
2

2
= ln(1− y)

=⇒ R
√
−2 ln(1− y)

Therefore given two uniform random variables u, v, we can generate a unit normal random variable
using the following algorithm.

Alg: u, v uniform on [0, 1].

r =
√
−2 lnu

θ = 2πv
In polar, return (r, θ)
(or return (x = r cos θ, y = r sin θ))

4.3 The Box-Muller Algorithm

Alg BM(u, v): u, v uniform on [0, 1].
1) Set u = 2u− 1, v = 2v − 1, (uniform on [−1, 1])
2) do w = u2 + v2 until w ≤ 1

3) Set A =
√
−2 lnw
w

4) return (T1 = Au, T2 = Av)

Claim 4.6. The Box-Muller Algorithm generates 2D unit Gaussian.

Proof. After step 2), write u, v as

V1 = R cos θ

V2 = R sin θ

S = R2

After step 4), we get the coordinate (x1, x2) where

x1 =

√
−2 lnS

S
V1 =

√
−2 lnS

S
R cos θ =

√
−2 lnS cos θ

Similarly,
X2 =

√
−2 lnS sin θ

6



In polar form, we have (R′, θ′), where R′ =
√
−2 lnS, θ′ ∈ [0, 2π].

Compute CDF of R′,

CDF (R′) = Pr[R′ ≤ r]
= Pr[

√
−2 lnS ≤ r]

= Pr[−2 lnS ≤ r2]

= Pr[S ≥ er2/2](∗)

Note suppose u, v is uniform over the unit disk, then in the figure below,

Figure 1: Visualization of r ≥ t

Pr[(u, v) ∈ annulus] = 1− t2

Consider random variable S = R2 = u2 + v2,

Pr[S ≥ t] = Pr[R2 ≥ t] = Pr[R ≥
√
t] = 1− t

Therefore,

Pr[S ≥ e
r2

2 ] = 1− e
r2

2

So S is Gaussian. This completes our proof.
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