15-451: Algorithms

Sept 29, 2020

Scribe:

Lecture Notes: Probability Review

Lecturer: Gary Miller

1

1 The Euler number

The this section we will develop some basic facts by about Euler's number e. These are notes based on the book by Dorrie² which we highly recommend for those more interested in the area.

The important inequality is:

$$\varphi(x) = (1 + \frac{1}{x})^x < e < \Phi(x) = (1 + \frac{1}{x})^{x+1}$$
(1)

for any positive x.

Since

$$\Phi(x) = (1 + \frac{1}{x})\varphi(x)$$

we see that in the limit as x goes to infinity that $\Phi(x) = e = \phi(x)$. Thus we have given a definition of e.

We will prove a slight variant of equation 1 which we will need for this class for x > 1

$$\varphi(x) = (1 - \frac{1}{x})^x < \frac{1}{e} < \Phi(x) = (1 - \frac{1}{x})^{x-1}$$
(2)

Dorrie uses the following inequality whose proof is in his book.

$$e^{\epsilon} < 1 + \epsilon(x - 1) \tag{3}$$

for x > 0 and $0 < \epsilon < 1$. We will use this inequality without proof but if one graphs these two functions it seem reasonable that it should be true.

Claim 1.1. If a > b > 0 then

$$(1 - \frac{1}{b})^b < (1 - \frac{1}{a})^a$$

To see this claim we set

$$x = (1 - \frac{1}{b}) \quad \epsilon = \frac{b}{a}$$

and substitute these values into inequality 3. This gives the inequality

$$(1 - \frac{1}{b})^{b/a} < (1 - \frac{b}{a}(1 - \frac{1}{b} - 1)) = (1 - \frac{1}{a})$$

Now taking the *a*th power of both sides we get the claim.

To get a bound from above we proof the following claim:

¹Originally 15-750 notes by Andre Wei

²100 great problems of elementary mathematics their history and solution

Claim 1.2. If a > b > 1 then

$$(1 - \frac{1}{b})^{b-1} > (1 - \frac{1}{a})^{a-1}$$

Here we make the following settings

$$x = (1 - \frac{1}{b-1}) = \frac{b}{b-1}$$
 $\epsilon = \frac{b-1}{a-1}$

From equation 3 we get

$$\left(\frac{b}{b-1}\right)^{(b-1)/(a-1)} < 1 + \left(\frac{b-1}{a-1}\right)\left(\frac{b}{b-1} - 1\right) = 1 + \frac{1}{a-1} = \frac{a}{a-1} \tag{4}$$

Which we can write as

$$\left(\frac{b}{b-1}\right)^{b-1} < \left(\frac{a}{a-1}\right)^{a-1} \tag{5}$$

Taking inverses of both sides we get

$$\left(\frac{b-1}{b}\right)^{b-1} > \left(\frac{a-1}{a}\right)^{a-1} \tag{6}$$

We can now rewrite inequality 1

$$\varphi(x) = (1 + \frac{1}{x})^x < \frac{1}{e} < \Phi(x) = (1 + \frac{1}{x})^{x-1}$$
(7)

for any 1 < x.

Since

$$(1 - \frac{1}{x})\Phi(x) = \varphi(x)$$

we see that in the limit as x goes to infinity that $\Phi(x) = 1/e = \phi(x)$. Thus we have given a definition of e.

2 The Exponential Distribution

Definition 2.1. Let Ω be a sample space, a random variable is a mapping $X : \Omega \to \mathbb{R}$.

Definition 2.2. The probability density distribution (PDF) of an exponential random variable X_{β} is

$$\Pr[X_{\beta} = \mu] = \begin{cases} \beta e^{-\beta\mu}, & \mu \ge 0\\ 0, & \text{otherwise} \end{cases}$$

Definition 2.3. The culmulative distribution function (CDF) of X_{β} is

$$F_{\beta}(y) \equiv \Pr[X_{\beta} \le y]$$

$$F_{\beta}(y) = \int_{0}^{y} \beta e^{-\beta x} dx = [-e^{-\beta x}]_{0}^{y} = 1 - e^{-\beta y}$$

Definition 2.4. The expected value of a random variable X is

$$\mathbb{E}_x[X] = \int_{-\infty}^{\infty} y \Pr[X = y] dy$$

Remark 2.5. There are two ways to calculate $\mathbb{E}[X_{\beta}]$ for a exponential random variable X_{β}

1. By definition, using integration by parts,

$$\mathbb{E}[X_{\beta}] = \int_0^\infty y\beta e^{-\beta y} dy = 1/\beta$$

2.

$$\mathbb{E}[X_{\beta}] = \int_0^\infty \Pr[X_{\beta} \ge y] dy = \int_0^\infty e^{-\beta y} = \left[-\frac{1}{\beta}e^{-\beta y}\right]_0^\infty = \frac{1}{\beta}$$

Proposition 2.6 (Memoryless Property). Given exponential random variable X_{β} ,

$$\Pr[X_{\beta} > m + n | X_{\beta} > n] = \frac{e^{-\beta(m+n)}}{e^{-\beta n}} = e^{-\beta m}$$

3 Order Statistics

Definition 3.1. X_1, X_2, \ldots, X_n are *n* i.i.d random variables. The *i*-th order statistic is

$$X_{(i)} = \text{SELECT}_k(X_1, \dots X_k)$$

i.e.

$$X_{(1)} \le X_{(2)} \le \ldots \le X_{(n)}.$$

Theorem 3.2. Suppose X_1, X_2, \ldots, X_n are *i.i.d* such that

$$f(u) = \Pr[X_i = u]$$

and

$$Fu = \Pr[0 \le X_i \le u].$$

Then

$$\Pr[X_{(1)} = u] = n(1 - F(u))^{n-1} f(u)$$

Corollary 3.3. If X_1, X_2, \ldots, X_n are *i.i.d* exponentials,

$$\Pr[X_{(1)} = u] = n(e^{-\beta u})^{n-1}\beta e^{-\beta u} = n\beta e^{-n\beta u}$$

So $X_{(1)} \sim Exp(n\beta)$. Therefore

$$\mathbb{E}(X_{(1)}) = \frac{1}{n\beta}.$$

Claim 3.4 (Expectation of $X_{(n)}$).

$$X_{(n)} \approx \frac{\log n}{\beta}$$

Proof. Let $S_i = X_{(i+1)} - X_{(i)}$, for $i \ge 0$. We will need the following sub-claim:

Claim 3.5.

$$S_i \sim Exp((n-i)\beta)$$

We will prove this claim using the memoryless property. We think of each X_i as a time, say, the time that the *i*th light bulb burnt out. Thus at time $X_{(i)}$ *i* of the bulbs have burnt out and n-i still lit. Assume that the burnt-out ones are X_1, \ldots, X_i , thus $X_j > X_{(i)}$ for $i < j \le n$. Thus $S_i \sim X_{(1)}$ but for n-i random variables.

Thus,

$$\mathbb{E}(S_i) = \frac{1}{(n-i)\beta}$$

Therefore,

$$\mathbb{E}(X_{(n)}) = \sum_{i=0}^{n-1} \mathbb{E}[S_i] = \frac{1}{\beta} (1 + \frac{1}{2} + \dots + \frac{1}{n}) = \frac{\ln n}{\beta}$$

Proposition 3.6 (Concentration for $X_{(n)}$).

$$\Pr[X_i \ge \frac{c\ln n}{\beta}] = e^{-c\ln n} = n^{-c}$$

By union bound we get,

$$\Pr[X_i \ge \frac{c \ln n}{\beta}] \le n \cdot n^{-c} = \frac{1}{n^{c-1}}$$

Thus,

$$\Pr[X_i \ge \frac{2\ln n}{\beta}] \le \frac{1}{n}$$

4 Generating Distribution of Random Variables

Problem: Given $f : \mathbb{R} \to \mathbb{R}^+$, where

$$\int_{-\infty}^{\infty} f(x)dx = 1$$

Want to find random variable X_f whose PDF is f.

Remark 4.1. It is not clear that the random variable exists. But we can ask if we have one, can we generate more.

Definition 4.2. Let f, g be PDF's with random variable X_f, X_g , we say $f \leq g$ if there exists a deterministic process D such that $X_f = D(X_g)$.

Example 4.3. Let U be uniform random variable with PDF u, i.e.

$$u(x) = \begin{cases} 1, & \text{if } x \in [0, 1], \\ 0, & \text{otherwise.} \end{cases}$$

Let U_2 be uniform random variable on [0, 2], with PDF u_2 , then

$$U_2 = 2U \implies u_2 \le u$$

4.1 Generating Exponential Distribution from Uniform Distribution

The PDF of an exponential random variable X is

$$f(X) = \beta e^{-\beta X}$$
 for $0 < \beta, X \ge 0$

and

$$F(X) = \int_0^\infty f(X)dX = 1 - e^{-\beta X}$$

Thus $F: [0, \infty] \to [0, 1]$ is one-to-one and onto. We get that $F(X_f)$ is uniform on [0, 1]. Therefore, $u \leq f$, But we want $f \leq u$. Find F^{-1} , i.e. solve for X in $Y = F(X) = 1 - e^{-\beta X}$

$$F^{-1}$$
, i.e. solve for X in $Y = F(X) = 1 - e^{-\beta X}$
 $Y = 1 - e^{-\beta X}$
 $\iff e^{-\beta X} = 1 - Y$
 $\iff -\beta X = \ln(1 - Y)$

$$\iff X = -\frac{1}{\beta} \ln(1 - Y)$$
$$\iff X = -\frac{1}{\beta} \ln Y \quad \text{since } 1 - Y \text{ is uniform on } [0, 1]$$

Thus $X_f = \frac{1}{\beta} \ln(X_u)$. Thus $f \le u$.

4.2 Generating Normal Distribution from Uniform Distribution

The PDF of a general normal random variable X is

$$f(X) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{X^2}{2\sigma^2}}$$

Taking $\sigma = 1$, we get Gauss' unit normal:

$$f(X) = \frac{1}{\sqrt{2\pi}} e^{-\frac{X^2}{2}}$$

But it is hard to compute the CDF of X

$$F(X) = \int_{-\infty}^{X} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx$$

Theorem 4.4. F(X) is not an elementary function.

Remark 4.5. It is OK to compute if $f(x) = xe^{-\frac{x^2}{2}}$, as

$$\frac{d}{dx}(-e^{-\frac{x^2}{2}}) = xe^{-\frac{x^2}{2}}$$

We consider 2D-normal.

Let
$$f(x,y) = \frac{1}{2\pi} e^{-\frac{x^2}{2}} e^{-\frac{y^2}{2}}$$

= $\frac{1}{2\pi} e^{-\frac{x^2+y^2}{2}}$

In polar,

$$f(r,\theta) = \frac{1}{2\pi}e^{-\frac{r^2}{2}}$$

Now we can find the cumulative with respect to a disk of radiu r:

$$D(R) = \int_0^R \frac{2\pi r}{2\pi} e^{-\frac{r^2}{2}} dr = -e^{-\frac{r^2}{2}} \Big]_0^R = 1 - e^{-\frac{R^2}{2}}$$

Again we compute F^{-1} ,

Let
$$y = 1 - e^{-\frac{R^2}{2}}$$

 $\implies e^{-\frac{R^2}{2}} = 1 - y$
 $\implies -\frac{R^2}{2} = \ln(1 - y)$
 $\implies R\sqrt{-2\ln(1 - y)}$

Therefore given two uniform random variables u, v, we can generate a unit normal random variable using the following algorithm.

Alg: u, v uniform on [0, 1]. $r = \sqrt{-2 \ln u}$ $\theta = 2\pi v$ In polar, return (r, θ) (or return $(x = r \cos \theta, y = r \sin \theta)$)

4.3 The Box-Muller Algorithm

Alg BM(u, v): u, v uniform on [0, 1].
1) Set
$$u = 2u - 1$$
, $v = 2v - 1$, (uniform on [-1, 1])
2) do $w = u^2 + v^2$ until $w \le 1$
3) Set $A = \sqrt{\frac{-2 \ln w}{w}}$
4) return $(T_1 = Au, T_2 = Av)$

Claim 4.6. The Box-Muller Algorithm generates 2D unit Gaussian.

Proof. After step 2), write u, v as

$$V_1 = R \cos \theta$$
$$V_2 = R \sin \theta$$
$$S = R^2$$

After step 4), we get the coordinate (x_1, x_2) where

$$x_1 = \sqrt{\frac{-2\ln S}{S}} V_1 = \sqrt{\frac{-2\ln S}{S}} R\cos\theta = \sqrt{-2\ln S}\cos\theta$$

Similarly,

$$X_2 = \sqrt{-2\ln S}\sin\theta$$

In polar form, we have (R', θ') , where $R' = \sqrt{-2 \ln S}, \ \theta' \in [0, 2\pi]$. Compute CDF of R',

$$CDF(R') = \Pr[R' \le r]$$

=
$$\Pr[\sqrt{-2\ln S} \le r]$$

=
$$\Pr[-2\ln S \le r^2]$$

=
$$\Pr[S \ge e^{r^2/2}](*)$$

Note suppose u, v is uniform over the unit disk, then in the figure below,

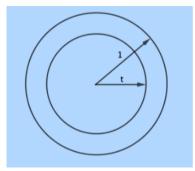


Figure 1: Visualization of $r \geq t$

$$Pr[(u,v) \in \text{annulus}] = 1 - t^2$$

Consider random variable $S = R^2 = u^2 + v^2$,

$$\Pr[S \ge t] = \Pr[R^2 \ge t] = \Pr[R \ge \sqrt{t}] = 1 - t$$

Therefore,

$$\Pr[S \ge e^{\frac{r^2}{2}}] = 1 - e^{\frac{r^2}{2}}$$

So S is Gaussian. This completes our proof.