
451: Amortized Analysis

G. Miller, K. Sutner

Carnegie Mellon University

2020/09/15

1 Amortized Analysis

2 Accounting

3 Potential Functions

4 Dynamic Tables

Counting Steps 2

There are two standard ways of assessing running time:

Worst-Case Analysis: Assume everyting goes wrong in the worst possible way.

Average-Case Analysis: Assume a probability distribution on the instances,
and take the average of the running times.

In a sense, average-case is more interesting, but significantly more challenging.
For example, quicksort would be entirely useless if it were not for excellent
average case behavior.

More Technically 3

Any reasonable model M of computation comes with a notion of a “single
step.” Hence we can define

TM(x) = length of computation of M on x

This is perfectly fine in principle, but causes a bit of friction in the
RealWorldTM: mathematical models of computation don’t quite match the
notion of “single step” in a real digital computer.

We will exploit this shamelessly and systematically ignore multiplicative
constants in order to simplify calculations. Knuth might have some objections,
but that’s not fair.

More 4

Counting steps for individual inputs is often too cumbersome, one usually
lumps together all inputs of the same size:

TM(n) = max
(
TM(x) | x has size n

)
This is worst case complexity. Alternatively we could try to determine

T avg
M (n) =

∑
(pxTM(x) | x has size n)

the average case complexity, where px is the probability of instance x.

BTW, getting probability distributions that conform to practical use is often
very hard. Smale got a lot of flack for his analysis of the simplex algorithm.

Operation Sequences 5

In most algorithms one has to deal with a sequence π of operations (say, push
and pop on a stack):

π : π1, π2, π3, . . . , πm−1, πm

Each operation transforms the underlying data structure and has some
associated cost cost(πi).

S0
π1−→ S1

π2−→ S2
π3−→ . . .

πm−1−→ Sm−1
πm−→ Sm

It may very well happen that some of the operations are quite expensive, but
overall the cumulative cost is not bad, since most operations are cheap. What
really matters is the overall cost of the whole sequence π, rather than the
individual costs.

Neither worst-case nor average-case analysis addresses this properly.

Amortization 6

Consider a sequence

S0
π1−→ S1

π2−→ S2
π3−→ . . .

πm−1−→ Sm−1
πm−→ Sm

It makes sense to compute the amortized cost of the operations. For a single
sequence π this simply means

costa(π) =
1

m

m∑
i=1

cost(πi).

Alas, for this to be useful we have to deal with all possible sequences.
Typically, we need to make sure that every expensive operation must be
preceded by lots of cheap ones.

So this is also a kind of average, but requires no probability distribution.

Example: Binary Counter 7

Here is a simple Mealy machine:

p q

1/0

0/1

a/a

This transducer implements the successor function on binary strings (LSD
first). E.g.,

11110010 00001010

Used as a counter on k-bit strings, this resets at 2k − 1 0.

If the bits are stored in an array, we could just operate in place and stop when
state q is reached (or we run out of bits).

In this array setting, how many steps does it take to count to n? Assuming, of
course, n < 2k.

Brute Force 8

The obvious simple-minded answer is O(n logn). But that’s a wild
overestimate:

Amortizing 9

Counting more carefully (and ignoring floors) we get

first bit changes n/2 times

second bit changes n/4 times

. . .

the ith bit changes n/2i times.

For simplicity assume n = 2k. Total number of bit-flips:∑
i≤k

i n/2i = 2k+1 − k − 2 ≈ 2n

Thus, the amortized cost is 2 per operation.

Note that there is only one sequence of operations of length n in this case, so
this is deceptively simple.

And Average? 10

For a binary counter, essentially the same argument also establishes the average
cost of an increment operation, assuming a uniform distribution over all
possible counter values (sounds a bit fishy, but it won’t matter in this case).

costavg = 1/2k
k∑
i=1

i 2k−i =

k∑
i=1

i 2−i =
2k+1 − k − 2

2k
≈ 2.

So this is essentially the same as amortized.

Warning: this is emphatically not the case in general.

Queue Simulation 11

One can implement a queue Q using two stacks A and B:

enqueue by pushing into A,

dequeue by popping from B;
if B is empty, first transfer all elements from A to B.

Suppose we have a sequence of m operations on the simulated queue.

So dequeue may be O(m) steps, but clearly that requires lots of enqueue
operations first. Thus O(m2) is a bad overestimate.

Amortizing 12

Say we have e enqueues, d dequeues, t transfers. Assume that a single transfer
has cost 2: one each for pop and push. But recall, in so many ways 2 = 1.

We clearly have

e+ d = m

t ≤ m

so that

e+ d+ t ≤ 3m.

So we have an amortized cost of 3 per operation.

Digression: Dijkstra 13

Vanilla Dijkstra requires

n inserts

n delete-mins

m promotions

In a standard binary heap these are all O(logn), so we get O((m+ n) logn).

But with a Fibonacci heap we can get the amortized cost of promote down to
constant, and the time changes to

O(m+ n logn)

1 Amortized Analysis

2 Accounting

3 Potential Functions

4 Dynamic Tables

How to Amortize 15

There are three standard approaches to determining amortized time.

Aggregate This is just a euphemism for the brute force counting we have
done so far.

Accounting “Overpay” for some operations, and use the surplus to pay for
other “deficit” operations.

Potential Use a potential function to modify the actual cost, so as to
simplify the calculation.

Psychology: A lot of people seem to respond very well to arguments couched in
terms of finances, which makes the accounting method rather popular. Of
course, it’s all semantic sugar.

Accounting Method 16

Say the actual cost of the ith operation is Ci = cost(πi). We use instead an
amortized cost C′i = cost′(πi) that may be larger or smaller than Ci.

If C′i > Ci then we place the difference into a savings account.

If C′i < Ci then we pay for the difference from the savings account.

For this to work we need the current credit to be nonnegative at all times:∑
i≤k

C′i − Ci ≥ 0

for all k ≤ m. If an deficit operation comes along we need enough money in
the bank.

Binary Counter 17

Here is a way to assign amortized cost for the
binary counter problem. We look at the two
possible bit-flips separately.

op C C′ ∆

0→ 1 1 2 1

1→ 0 1 0 −1

This works since starting at 00 . . . 00 we need
to perform a flip 0→ 1 before we can do a
1→ 0.

Table: counter, total ∆, account.

1 Amortized Analysis

2 Accounting

3 Potential Functions

4 Dynamic Tables

Recall: Negative Dijkstra 19

Remember the clever modification that allows Dijkstra’s algorithm to work on
graphs with negative costs: the key idea is to force every edge to carry
non-negative cost by setting

costΦ(u, v) = cost(u, v) + Φ(v)− Φ(u)

using a potential function Φ : V → R . Because sums telescope, this carries
over to paths.

And, we can compute a suitable potential function relatively cheaply by finding
shortest paths in the augmented network.

How About Amortized Cost? 20

Our problem is to compute the amortized cost of a sequence of operations
(analogous to a path) and do this for all possible sequences:

1

m

m∑
i=1

cost(πi).

At least, we need an upper bound for the sum.

Alas, in many cases, the individual cost Ci = cost(πi) can be very erratic, so
that the summation is difficult to carry out.

It would be nice to have some way to smooth things out.

Adding Potential 21

We replace the actual cost by a modified cost using a potential function:

Φ : states→ R

costΦ(π) = cost(π) + Φ(S′)− Φ(S)︸ ︷︷ ︸
∆Φ

where S
π−→ S′

Summing over sequences of operations, we get a telescoping sum and it follows
that

m∑
i=1

costΦ(πi) =

m∑
i=1

cost(πi) + Φ(Sm)− Φ(S0)︸ ︷︷ ︸
∆Φ

.

Contrary to appearances, the sum on the left may actually be easier to evaluate.
And we can revover the actual cost by subtracting the difference in potential.

Note: the potential function only plays a rôle in the analysis of the algorithm,
it is emphatically not part of the data structure.

Comments 22

Needless to say, the crucial problem with this method is to find the right
potential function. This calls for an Ansatz: make a clever guess, and verify it
works.

In other words, there is no simple universal method to construct potential
functions, it’s a bit of a black art and usually requires experimentation.

Typically we will choose Φ so that some of the terms in the actual cost
function cost(π) are cancelled.

Sometimes counting things that change is a good idea.

https://en.wikipedia.org/wiki/Ansatz

Binary Counters and Potentials 23

For the binary counter from above the states of the system are simply all the
k-bit numbers, and we can define

Φ(S) = number of 1’s in S = digit sum of S

The real cost of an increment operation is the number of initial 1’s, plus one.

So suppose S =

r︷ ︸︸ ︷
111 . . . 11 0x and let the number of 1’s in x be s.

Thus S′ =

r︷ ︸︸ ︷
000 . . . 00 1x and we have

costΦ(π) = cost(π) + Φ(S′)− Φ(S)

= (r + 1) + (s+ 1)− (r + s) = 2

Let k be the digit sum of m and it follows that

m∑
i=1

cost(πi) = 2m− k.

Thus, the amortized cost is bounded by 2.

Simulated Queues and Potentials 24

The states are certain pairs of stacks (A,B). Actually, we only need their sizes.
At any rate, define

Φ(A,B) = 2 · size of A.

Write aA to indicate that a is at the top. Then

costΦ(enq) = 1 + Φ(aA,B)− Φ(A,B)

= 1 + 2(|A|+ 1)− 2|A| = 3

costΦ(deq) = 1 + Φ(A,B)− Φ(A, bB)

= 1 + 2|A| − 2|A| = 1

or, in the transfer case,

costΦ(deq) = (2|Aa|+ 1) + Φ(nil, A)− Φ(Aa, nil)

= (2|Aa|+ 1) + 0− 2|Aa| = 1.

Hence the amortized cost is bounded by 3.

1 Amortized Analysis

2 Accounting

3 Potential Functions

4 Dynamic Tables

Tables 26

Think of a table data structure, say, an array. Operations are fast as long as we
do not exceed the capacity of the table. We would like to have an option to,
say, double the capacity (move everything over, deallocate the old structure).

We can think of this as a discrete dynamical system, with parameters:

capacity the maximum number of entries, and

size the actual number of entries.

We write n for the capacity and s ≤ n for the size. α denotes the load factor
s/n ≤ 1. Operations:

insert Insert an element, s s+ 1.

grow Grow the table, n 2n.

Here we tacitly assume that the first insert creates a table with n = s = 1.

Jumps 27

Since we double capacity only when the load factor is already 1 we have the
invariant

2k−1 < s ≤ n = 2k.

So m inserts lead to state (2k,m) where k = |m− 1|, writing |x| for the
number of binary digits of x.

10 20 30 40 50 60

10

20

30

40

50

60

Analysis 28

Clearly insert is O(1) unless a grow is needed: in this case we move from state
(2k, 2k) to state (2k+1, 2k + 1).

grow is expensive at, say, n = 2k steps. But these operations are rare and
require many inserts first. Again, we are ignoring multiplicative constants here
(whose exact values we don’t know to begin with).

The cost of all the grow operations is
∑
i<k 2i = 2k − 1.

Adding the m inserts, we get 2k +m− 1 < 2k+1.

So amortized cost is still O(1).

And Potentials? 29

Can we use potentials for the array analysis? What is a suitable potential
function?

As usual, let’s try an Ansatz:

Φ(n, s) = 2s− n

We need to analyze the modified cost for a state transition S
π−→ S′

costΦ(π) = cost(π) + Φ(S′)− Φ(S)

In our case, we only have to deal with π = insert. But, there really are two
cases depending on whether we are at capacity or not.

https://en.wikipedia.org/wiki/Ansatz

Analysis 30

If the insert is plain we have S = (n, s) and S′ = (n, s+ 1), so

∆Φ = (2(s+ 1)− n)− (2s− n) = 2.

If grow is needed we have S = (n, n) and S′ = (2n, n+ 1). Hence

∆Φ = (2(s+ 1)− 2n)− (2s− n) = 2− n.

This is exactly what we need: ordinary inserts push the potential up, but grow
inserts cause it to drop (hopfully not by too much).

Picture 31

10 20 30 40 50 60 70 80 90 100 110 120 130

4
8

16

32

64

128

How About Deletions? 32

It is tempting to avoid wasting lots of memory when the load factor becomes
small: we should shrink the array and free up memory.

Careful, though, it’s not a good idea to adopt the following simple-minded
policy:

When α = 1, double.

When α < 1/2, shrink.

Why? First perform 2k insertions, leading to the edge of chaos. Then do

insert, delete, delete, insert, insert, delete, delete, . . .

A quadratic disaster.

Solution 33

Wait: Only shrink by half when the load factor drops below 1/4.

In this case, we have 1/4 ≤ α ≤ 1.

We need to modify our potential function to deal with this new situation

Φ(n, s) =

{
2s− n if α ≥ 1/2,

n/2− s otherwise.

So, at the sweet spot α = 1/2, the potential is 0. As we move away from
α = 1/2, we add to the potential to get read to pay for the next grow or
shrink.

Since there is asymmetry, the deltas are 1 or 2.

Picture 34

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

2
4

8

16

32

64

Inserts 35

Case 1: α ≥ 1/2:

We are essentially in the same situation as in the first scenario when there were
no deletions: costΦ(insert) = 2.

Case 2: α, α′ < 1/2

There is no change in capacity, so we have

costΦ(insert) = 1 + (n′/2− s′)− (n/2− s) = 0.

Case 3: α < 1/2 ≤ α′

We have s = n/2− 1, s′ = n′/2 = n/2. So

costΦ(insert) = 1 + (2s′ − n′)− (n/2− s) = 0.

Deletes 36

Case 1: α′ ≥ 1/2:

There is no shrinking, so

costΦ(delete) = 1 + (2s′ − n′)− (2s− n) = −1.

Case 2: α = 1/2

Again, no change in capacity, so we have

costΦ(delete) = 1 + (n′/2− s′)− (2s− n) = 2.

Case 3: 1/4 ≤ α′, α < 1/2

Then
costΦ(delete) = 1 + (n′/2− s′)− (n/2− s) = 2.

The Critical Case 37

Case 4: α′ < 1/4 ≤ α.

This triggers a shrink operation, so

n′ = n/2, s = n/4, s′ = s− 1.

Then

costΦ(delete) = (s+ 1) + (n′/2− s′)− (n/2− s)
= s+ 1 + n/4− s+ 1− n/2 + s

= 2

So, in all cases, costΦ(delete) = O(1).

Done.

	Amortized Analysis
	Accounting
	Potential Functions
	Dynamic Tables

