
451: DFS and Biconnected Components

G. Miller, K. Sutner

Carnegie Mellon University

2020/09/22



1 Graph Theory

2 Exploration

3 Biconnected Components



Ancient History 2

A quote from a famous mathematician (homotopy theory) in the first half of
the 20th century:

Graph theory is the slum of topology.

J. H. C. Whitehead

He is a nephew of the other Whitehead. Actually, he talked about
“combinatorics”, but early in the 20th century “graph theory” was a big part of
combinatorics (everything outside of classical mathematics).

Not a good sign.



Less Ancient History 3

But, things have improved quite a bit since.

We have not begun to understand the relationship
between combinatorics and conceptual mathematics.

J. Dieudonné (1982)

Some would suggest that computers will turn out to be the most important
development for “conceptual mathematics” in the 20th century. Since a lot of
combinatorics and graph theory is highly algorithmic, it naturally fits perfectly
into this new framework.



What’s a Graph? 4

Depends on the circumstances. We have a structure G = 〈V,E〉 comprised of

Vertices a collection of objects (also called nodes, points).

Edges connections between these objects (also called arcs, lines).

We’ll formalize in a minute, but always think in terms of pictures—but with
requisite caution.



Different Types 5

There are several different versions of graphs in the literature. Key issues are

directed versus undirected (digraphs vs. ugraphs)

self-loops

multiple edges

Also, very often one needs to attach additional information to vertices and/or
edges.

vertex-labeled graphs

edge-labeled graphs

We will not deal with multiple edges, but may occasionally allow loops.

Abstractly, we are really dealing with a structure 〈V, ρ〉 where ρ is a binary
relation on V (at least when multiple edges are not allowed).



Notation 6

n is the cardinality of V , and m the cardinality of E.

Directed edges are often written e = u � v or e = (u, v) or e = uv.

Undirected edges are e = u−v or e = {u, v} or e = uv.

u = src(e) ∈ V is the source,

v = trg(e) ∈ V is the target.

We use the same terminology for paths u −→ v.

Standard implementations:

adjacency lists

adjacency matrices

Don’t automatically knock the latter, packed and sparse arrays can be quite
efficient. Also, the matrix perspective opens doors to non-combinatorial
methods (spectral graph theory).



Pictures are Your Friend 7

The Coxeter graph, and its triangular version.

https://en.wikipedia.org/wiki/Coxeter_graph


Coxeter with Adjacency Matrices 8

In this presentation, it is utterly impossible to understand what is going on.



But Beware: Pappus 9



Other Embeddings 10



Graph Properties 11

Ever since Felix Klein’s Erlanger Progamm it has become popular to study any
particular domain math in terms of the structure preserving maps of the
domain, and in particular in terms of symmetries (or automorphisms).

For graph theory, this means that one should study properties of graphs that
are invariant under graph automorphisms. For example, permuting vertices
(and adjusting the edges accordingly) should be irrelevant.

That works nicely in theory, but causes friction for computation: we have to
use data structures to represent graphs, and these are definitely not
well-behaved: e.g., reordering adjacency lists leaves the graph unchanged, but
affects the execution of lots of graph algorithms.

And pictures are just about hopeless computationally.

https://en.wikipedia.org/wiki/Erlangen_program


1 Graph Theory

2 Exploration

3 Biconnected Components



Reachability 13

For a graph G = 〈V,E〉 and a vertex s let the set of points reachable from s be

Rs = {x ∈ V | ∃ path s −→ x }

To compute Rs we can use essentially the same prototype algorithm as for
shortest path:

We initialize a set R to {s}. This time an edge e = uv requires attention if, at
some point during the execution of the algorithm, u ∈ R but v /∈ R. We relax
the edge by adding v to R.

Exercise

Give termination and correctness proofs.



Bookkeeping 14

We have to organize the order in which edges uv are handled: usually several
edges will require attention, we have to select a specific one.

To this end it is best to place new nodes into a container C (rather than just in
R): C holds the frontier, all the vertices that might be the source of an edge
requiring attention.

R = C = {s}

while C 6= ∅
u = extract from C
if some edge uv requires attention

add v to R, C

R is a set data structure, and C must support inserts and extracts: a stack or
queue will work fine. And the stack can be handled implicitly via recursion.



Depth First Search (DFS) 15

The basic idea behind DFS. This version just computes reachable points, we
will see far more interesting modifications in a while.

defun dfs(x : V )
put x into R
forall xy ∈ E do

if y /∈ R
then dfs(y)

In practice, there usually is a wrapper that calls dfs repeatedly until all vertices
have been found.

Running time is clearly O(n+m).

Note that the additional space requirement is O(n) for the set R and the
recursion stack (which might reach depth n).



The DFS Tree 16

The edges requiring and receiving attention in DFS form a tree (or a forest if
we run DFS repeatedly on nodes not yet encountered).

0

21

22

23

1

18

19

20

2

15

16

17

3

12

13

14

4

9

10

11

5

6

7

8

0

1

2

3

19

14

9

4

20

15

10

5

21

16

11

6

22

17

12

7

23

18

13

8

Vertices are labeled in order of discovery. So this is east-first versus north-first.



Random Lists 17

0

23

4

5

1

2

3

6

10

9

8

7

11

12

19

20

22

13

18

17

21

14

15

16

Adjacency lists are randomized.



Recall: Trees and Order 18

Consider some tree T . Then T induces a partial order on its nodes:

x � y ⇐⇒ x
T−→ y

This order is usually partial: unless T is degenerate, there are incomparable
elements x and y: we have neither x � y, nor y � x.



Classifying Edges 19

Suppose we run DFS on vertex s in graph G, producing a tree T . We can
classify the edges as follows, based on the partial order induced by the tree:

tree edges xy that are explored and part of T :
y is the successor of x in ≺.

forward edges xy from some node in T to a node below: x ≺ y.

back edges xy from some node in T to a node above: y ≺ x.

cross edges from some node in T to an incomparable node.

Again: this decomposition of E depends not just on the graph but on the
actual adjacency lists: it is not a graph property (something that is invariant
under isomorphisms), but a property of the representation. We have to make
sure that this does not matter in correctness arguments.



Undirected Case 20

The classification needs to be adjusted a bit for ugraphs. Think of an
undirected edge as two directed edges going back and forth.

Claim: In a ugraph we still have tree edges and back edges, but there are no
forward edges and no cross edges.

To see why, suppose uv is a forward edge in T and let P = u
T−→ v be a path

in T . Then the call to u that started building P did inspect uv = vu and is
already done when activity returns to u.

The argument for cross edges is essentially the same.



Computational Classification 21

Write Et, Ef , Eb and Ec for these edge classes. How do we compute them?

Here is the vanilla version of DFS: we augment the procedure by adding a
counter t that determines two timestamps dsc(x) and cmp(x), the discovery
(aka DFS number) and completion time. Say, the counter is initialized to 1.

defun dfsvanilla(x : V )
dsc(x) = t++ // vertex x discovered
forall xy ∈ E do

if dsc(y) == 0 // edge xy requires attention
then dfsvanilla(y)

cmp(x) = t++ // vertex x completed

Here we assume that dsc and cmp are initialized to 0 before the first call; so we
can use dsc as a replacement for the set R.



Tree and Reachability 22

Lemma

Run DFS on vertex u and let T be the resulting tree. Then for all v reachable

from u there is a tree path u
T−→ v.

Proof.

Claim: Assume that v has at least one predecessor w such that u
T−→ w. Then

u
T−→ v.

Suppose otherwise and let w be the predecessor of v with minimum discovery
time. During the call to w, v is not found when other children are explored. But
then edge wv will be added to T when that edge is explored, contradiction.

Done by induction on the distance from u to v.

2



Non-Overlap 23

The timestamp intervals dur(x) = [dsc(x), cmp(x)] describe the duration of the
call to x (in logical time). These intervals cannot overlap without containment.

Lemma

Duration intervals are either disjoint or nested.

Proof.

We may safely assume dsc(x) < dsc(y). If dsc(y) > cmp(x) the intervals are

clearly disjoint. If dsc(y) < cmp(x) then we must have a tree path x
T−→ y.

But then dur(y) ⊂ dur(x).

2

So nested intervals correspond to nested calls:

x
T−→ y ⇐⇒ dur(y) ⊆ dur(x)



Classifying Edges 24

Lemma

Let xy be an edge in digraph G. Then

xy ∈ Et ∪ Ef ⇐⇒ dur(y) ⊂ dur(x)

xy ∈ Eb ⇐⇒ dur(x) ⊂ dur(y)

xy ∈ Ec ⇐⇒ dur(y) < dur(x)

Exercise

Prove the lemma.



Finding Cycles 25

Lemma

The part reachable from s has a cycle iff DFS from s produces a back edge.

Proof.

Clearly a back edge indicates the existence of a cycle.

So suppose there is a cycle c1, c2, . . . , cm and a path s
T−→ c1 which touches

the cycle for the first time. Then a call to cm is nested inside the call to c1.
But then cmc1 is a back edge.

2

Considering a vertex where the search touches some part of the graph for the
first time is an idea that we will use repeatedly.



Topological Sort 26

Suppose G is a DAG: a directed acyclic graph. In view of our “look at
pictures” philosophy, how about drawing the graph in such a way that all edges
go from left to right? Here is brute force.

L = nil
S = {x ∈ V | x has indegree 0 }

while S 6= ∅
extract x from S
append x to L
forall xy ∈ E do

remove xy from graph
if y has indegree 0
then insert y into S

od
return L



Better: DFS 27

run DFS on the indegree 0 points, compute completion numbers,

sort the vertices in terms of descending completion numbers.

1:18

2:3

4:13 14:17

5:12 15:16

6:7

8:11

9:10

19:24

20:23

21:22

1 234 56 78 910 11 12



1 Graph Theory

2 Exploration

3 Biconnected Components



Decomposing a Ugraph 29

Let G = 〈V,E〉 be a ugraph and U ⊆ V .

Definition

U is connected if there is a path between any two points in U .
U is a connected component if U is a maximal connected subset.

Proposition

Distinct connected components are disjoint.

So we can decompose a graph into its connected components; the original
graph G is the disjoint sum of the corresponding subgraphs.

Finding connected components is easy via Boolean matrices (using
multiplication or Warshall’s algorithm) or repeated applications of DFS (linear
time).



Transitive Closure 30

Both the Boolean matrix approach and Warshall’s algorithm compute the
reflexive transitive closure E? of the symmetric edge relation E.

In other words, we compute the finest equivalence relation that extends the
edge relation, and represent it by a Boolean matrix.

Given that matrix, one can easily compute the equivalence classes in O(n2)
steps. Likewise, we can compute the condensation graph.

Exercise

Figure out in detail how to do this.



Biconnected Components 31

An articulation point of a connected graph G is a vertex v such that G− v is
disconnected. A biconnected graph is a connected graph that has no
articulation points. A biconnected component (BCC) (or block) of a connected
undirected graph is a maximal biconnected subgraph.

In many graph applications (think communication network) articulation points
are undesirable.

Exercise

Show that any ugraph other than K2 is biconnected iff for any two distinct
nodes u and v there are two vertex-disjoint paths from u to v.



Edge-Disjointness 32

Two biconnected components can have at most one vertex in common.

Lemma

Biconnected components are edge-disjoint.

Proof. Assume edge uv belongs to two BCCs A and B. Since A ∪B is no
longer biconnected, there must be an articulation point w. Suppose a and b are
points in two components of (A ∪B)− w. Since A and B are biconnected we
may assume a ∈ A and b ∈ B; furthermore, u 6= w. But then there is a path
from a to u and from u to b, contradiction. 2



Blocks 33

Let G be some connected ugraph. Given the biconnected components
B1, B2, . . . , Bk and articulation points a1, a2, . . . , a` of G we can associate the
following graphs with G:

Block graph: vertices are the biconnected components of G. There is an
edge between B and B′ if they share a vertex (an articulation
point).

Block tree: vertices are the biconnected components and articulation
points. There is an edge between a and B if a ∈ B.

Clearly it suffices to compute the biconnected components and articulation
points to produce these graphs.



DFS and BCCs 34

defun dfsbcc(x : V )
dsc(x) = low(x) = t++
c = 0
forall xy ∈ E do

if dsc(y) = 0 // xy tree edge
then

par(y) = x
c++
push xy onto stack
dfsbcc(y)
low(x) = min(low(x), low(y))
if x is articulation point
then pop the stack down to xy

else // xy back edge
if y 6= par(x)
then

low(x) = min(low(x), dsc(y))
if dsc(y) < dsc(x) then push xy onto stack

od



Comments 35

timestamp t is initialized to 1

arrays dsc, low and par are initialized to 0 (vertices are [n])

c is the number of children of x, and

it is used in the test for x being an articulation point:

(dsc(x) = 0 ∧ c > 1) ∨ 0 < dsc(x) ≤ low(y)

upon completion of a call dfsbcc(x) there may still be edges of the last
BCC on the stack

low(x) is the smallest DFS number reachable from x (see below), so it
refers to a place highest in the tree—and so could also be called hi(x).



Quoi? 36

First, and example:

1

2 3

4

5

6

7

8

9

10

11

12

BCCs: {1, 2, 3, 4, 5}, {5, 6, 7, 8, 9}, {9, 10, 11, 12}



Run 37

1

2 3

4

5

6

7

8

9

10

11

12

1

2 3

4

5

6

7

8

9

10

11

12



Correctness 38

Suppose we execute a call dfsbcc(r), r the root of the DFS tree T . Define

λ(x) = min
(

dsc(v) | x T−→ u � v
)

Thus λ(x) indicates how far up the tree we can go with a tree path plus one
back edge. For the time being, ignore the edge stack and focus on identifying
articulation points.

Since there are no cross edges, it is easy to deal with the root itself.

Claim 1: r is an articulation point iff r has at least two children.

So assume vertex u ∈ T is not the root.

Claim 2: u is an articulation point iff for some child v of u, λ(v) ≥ dsc(u).



Correctness 2 39

To see why, consider G− u. Then any path from v must be contained in Tv.
But r /∈ Tv, so G− u is disconnected.

On the other hand, if G− u is disconnected, then at least one child v of u
must have λ(v) ≥ dsc(u).

Great, but what does λ have to do with the algorithm?

Lemma

low(x) = λ(x).

Inspecting the code, we can see that

low(x) = min


dsc(x)

low(y) xy ∈ E,

dsc(v) x
T−→ u, uv back



And the Edge Stack? 40

We know that the algorithm correctly identifies articulation points. But how do
we output the right edge sets for the biconnected components?

Suppose u is an articulation point, and assume it’s not the root of the DFS
tree. Let v be the “special” child, and assume that Tv contains no further
articulation points.

All the tree edges in Tv are placed into the stack during the call to dfsbcc(v).
If a back edge in that subtree is encountered, it also enters the stack.

But then, when the call to dfsbcc(v) terminates, all these edges are removed
from the stack and returned.

By induction, this method works throughout T .



Upshot 41

Theorem

We can compute the articulation points and biconnected components of a
ugraph in linear time.

Vanilla DFS is obviously linear, and our modifications only add a linear
overhead. For example, every edge enters the stack only once.

By comparison, the brute-force method would be O(n(n+m)) and involve a
lot of recomputation.



Performance 42

Randomized graphs tend to have one giant BCC, and a number of tiny ones.
For example, n = 100 000, m = 105 000 produces 42 889 BCCs, one of size
55 305, the others of size 1 and 2. Takes 0.44 seconds on my laptop.

With higher edge probability we get down to 0.02 seconds.

The version of this graph with n = 100 001 and loops of length 1000 produces
101 components of size 1000; takes 0.015 seconds.



Exercises 43

Exercise

Explain in more detail why the BCC algorithm returns the correct edge sets.

Exercise

Figure out how to compute bridges in a ugraph.

Exercise

Implement the algorithm and explain the apparent speed-up on random graphs
when the edge probability increases.

Exercise

Biconnected components are also called 2-connected. What would k-connected
mean for k > 2? How would you go about computing k-connected
components?


	Graph Theory
	Exploration
	Biconnected Components

