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Recall: The Key Steps 2

Here are the key ingredients in any dynamic programming algorithm.

Find a suitable notion of (smaller) sub-instance for any given instance.

Find a recursive way to express the solution of an instance in terms of the
solutions of the sub-instance(s).

For bottom-up: organize this recursive computation into a neat table,
possibly with some pre-computation.



Shortest Paths 3

Suppose we have a directed graph G = 〈V,E〉 and a cost function
cost : E → N≥0 on its edges.

The cost of a path P = x1, x2, . . . , xk is

cost(P ) =
∑
i

cost((xi, xi+1)).

We will refer to the number of edges on a path as its length. The distance
from x to y is

δ(x, y) =

{
min

(
cost(P ) | P path x→ y

)
if such a path exists,

∞ otherwise.

These paths should be called minimum cost paths, but are usually referred to
as shortest paths.

Claim: If P : s = x0, x1, . . . , xk = t is a shortest path from s to t, then its
initial segments are shortest paths from s to xi.



Variants 4

There are two basic variants:

Single-Source: Some source vertex s is fixed, we want to compute δ(s, t) for
some/all targets t.

All-Pairs: We have to compute δ(x, y) for all x, y ∈ V .

Even in the single-source version, because of the prefix property of shortest
paths, we cannot avoid dealing with additional source vertices.



Costs 5

For the time being, we will constrain ourselves to non-negative costs. This is
entirely natural for example when dealing with costs related to some geometry:
vertices are points in some space, and cost(x, y) is the distance between x and
y.

Standard case: the space is “Rn” and the distance is Euclidean.

Negative costs also make perfect sense, for example when describing the
change of some potential during a transition in some system from one state to
another.

We’ll mention negative costs later.



Single Source 6

Fix some source vertex s and write δ(x) = δ(s, x).

Our strategy is to compute

overestimates dist(x) for δ(x),

that are associated with an actual path.

Thus, dist(x) may not be optimal, but it is not just some random value; it is
always realized by a path.

We say that edge (u, v) requires attention if dist(v) > dist(u) + cost(u, v).

We improve the overestimate for v by relaxing the edge:

dist(v) = dist(u) + cost(u, v).



Prototype Algorithm 7

// prototype shortest path algorithm

initialize dist(s) = 0

while some edge (u, v) requires attention
relax (u, v)

Lemma

The prototype algorithm is correct.

Of course, we need to organize the search for the unhappy edge and the data
structures. One very elegant solution is Dijkstra’s algorithm: explore the
neighbors of the currently closest vertex, using a heap to keep track of the
latter. With ordinary heaps we get O((m+ n) logn), with Fibonacci heaps
even O(m+ n logn).



Proof 8

Termination: dist(x) is always the cost of a real path s to x, so the value of
dist(x) can decrease only finitely often (costs are non-negative). Hence an edge
can require attention only finitely often and ultimately ceases to do so. Thus,
the algorithm terminates.

Correctness: Suppose that upon completion for some path

P = s, x1, . . . , u, v

we have δ(v) = cost(P ) < dist(v). Choose P to be of minimal length (not
cost!). Then dist(u) = δ(u). But after dist(u) is set to δ(u), the edge (u, v)
requires attention:

dist(v) > δ(v) = δ(u) + cost(u, v) = dist(u) + cost(u, v).

When (u, v) is relaxed, dist(v) = δ(v), contradiction.
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The Obstruction 9

To turn the prototype algorithm into a dynamic programming method, we need
some notion of sub-instance.

The Problem: In general, graphs are notoriously ill-structured, there is no easy
way to decompose them into smaller graphs in order to get a recursive
approach.

Some families of graphs have nice inductive properties (say, trees or
series-parallel graphs), but in general we need a clever idea to come up with
useful sub-instances.



Bellman-Ford 10

Idea: constrain the allowed paths to have length (not cost!) at most k,
k = 0, . . . , n− 1.

Write dist(x, k) for the corresponding constrained distance from s to x. Note
that this is a realized overestimate, just like before.

Initializing k = 0 is easy:

dist(v, 0) =

{
0 if s = v,

∞ otherwise.

There are n− 1 rounds based on the following recursion:

dist(v, k) = min
(
dist(v, k − 1), min

(x,v)∈E
dist(x, k − 1) + cost(x, v)

)



Comments 11

In other words, in each round, we try to relax all edges with target v, for all v.

Given a standard adjacency list representation, we can easily precompute
predecessor sets pre(v) = {x ∈ V | (x, v) ∈ D } in linear time. Since, in each
round, we touch every edge only once, the total running time is O(nm).

As usual, we do not obtain the actual shortest path, just its cost. This is easy
to fix: maintain a predecessor array π(v): the predecessor of v on a currently
shortest path from s to v (update whenever an edge with target v is relaxed).
To get a path, retrace your steps from the target to the source in linear time.



Negative Costs 12

What happens if we allow cost(u, v) < 0?

One problem now is that the notion of shortest path may no longer be
well-defined: if there is a negative cost cycle we are sunk. More precisely, if
there is a negative cost cycle that is reachable from the source s, but we won’t
quibble.

So there are two problems:

Decide whether there is a negative cost cycle.

If not, compute shortest paths.

Note that Dijkstra fails in general with negative costs, even if the graph is
acyclic.



But BF Works 13

Recall that we have n− 1 rounds k = 1, 2, . . . , n− 1, so all simple paths
starting at s can be taken into account.

Hence, if there is no negative cost cycle reachable from s, an additional round
n will change nothing. On the other hand, if round n changes any distance,
this must have been caused by a bad cycle.

Thus we can solve the decision problem, and have the right distances in the
good case.

Exercise

Find a negative cost example where Dijkstra fails.

Exercise

Explain carefully why Bellman-Ford works with negative costs.
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All-Pairs 15

How about All-Pairs? We could run a single-source algorithm like Dijkstra
repeatedly, at a cost of O(n(n+m) logn). With fancy heaps this can be
reduced to O(n(m+ n logn)), which is particularly useful for sparse graphs.

At any rate, note that there will be recomputation, we will discover some
shortest paths over and over.

So dynamic programming might help.

Again we have to deal with our old problem: graphs don’t carry a nice
inductive structure.

We need a clever idea to come up with useful sub-instances.



Floyd-Warshall 16

Here is a somewhat brutal approach: let’s ignore the topological structure of
the graph entirely and simply smash it to pieces:

We restrict intermediate vertices on a path.

Assume V = [n] and set

distk(u, v) = length shortest path u→ v using only points ≤ k

where 1 ≤ u, v ≤ n and 0 ≤ k ≤ n. Note that the endpoints of the path are
excluded from the restriction, we only worry about the intermediate points
being “small.”

In other words, we simply smash the graph by temporarily erasing vertices
k + 1, k + 2, . . . , n. That’s OK since distn(u, v) = δ(u, v).



Recursion 17

Initializing k = 0 is easy:

dist0(u, v) =


0 if u = v,

cost(u, v) if (u, v) ∈ E,

∞ otherwise.

The recursion now looks like so:

distk(u, v) = min(distk−1(u, v), distk−1(u, k) + distk−1(k, v))

The second term represents paths i
<k−→ k

<k−→ j.

Lemma

Floyd-Warshall runs in time Θ(n3) and space Θ(n2).



Comment 18

Note that the code for this is incredibly simple: three nested for-loops with a
one-line body, no data structures. Almost impossible to get wrong.

This is an algorithm that breaks our “relax an edge” principle, it works with
paths rather than inspecting single edges.

Exercise

Figure out how to detect negative cost cycles using Floyd-Warshall.

Exercise

Show that Floyd-Warshall works with negative costs.



How About Dijkstra? 19

Running the fancy heap version of Dijkstra n times produces
O(n(m+ n logn)), which is good for sufficiently sparse graphs where m� n2.

But how about negative costs?

Wild & Woolly Idea: Why not simply add some sufficiently large constant C
to all edge costs to make them positive?

Exercise

Explain why cost′(u, v) = cost(u, v) + C does not work.



Potentials 20

Constants are too simple-minded, instead we can use a potential function
Φ : V → R and define

cost′(u, v) = cost(u, v) + Φ(u)− Φ(v)

Now suppose you have a path P = u, x1, . . . , xk, v. Then

cost′(P ) = cost(P ) + Φ(u)− Φ(v)

because the sum is telescoping.

So the offset in the modified cost is independent of the actual path taken, only
source and target matter. But then we get the same shortest paths. Very neat.



But How? 21

We need to define and compute Φ. Here goes.

Cone a new vertex ⊥ onto the old graph: add new edges (⊥, x) of cost 0 for all
x ∈ V . Then run Bellman-Ford on this modified graph to determine distances
with source ⊥ and target x ∈ V ; the result is Φ(x) ≤ 0.

But then necessarily for any old edge (u, v)

Φ(u) + cost(u, v) ≥ Φ(v).

Hence cost′(u, v) ≥ 0.

Running time is O(n(n+m) logn), using plain heaps.
With Fibonacci heaps we get O(nm+ n2 logn).



1 Shortest Paths

2 All-Pairs

3 Matrix Multiplication

4 Traveling Salesperson



Algebra Magic 23

Recall that we can interpret the adjacency matrix A of a graphs as a Boolean
matrix, an n× n matrix over the Boolean semiring, the structure

B = 〈2,+, ∗, 0, 1〉

where + corresponds to disjunction, and ∗ to conjunction. It’s not a ring since
addition has no inverse.

Then Ak describes paths of length exactly k. To tackle reachability it suffices
to compute

(A+ I)n−1 = I +A+A2 + . . .+An−1.

Using fast exponentiation, this can be handled in O(logn) Boolean matrix
multiplications (BMM).



Cheating 24

We have seen that over better structures than B we can speed up matrix
multiplication to O(nω) for some ω < 3.

To exploit this for BMM, use a trick that will make any type theory person
cringe: think of a Boolean matrix as an integer matrix. Then multiply and get
back to “Boolean” by applying the sign function everywhere.

Switching the underlying algebraic structure sometimes works wonders.

OK, but reachability is a one-bit answer. Can we use a similar trick to get
distances? What do we really need to perform matrix multiplication?



Recall: Semirings 25

A semiring is an algebraic structure

〈X,⊕,⊗, 0, 1〉

with two binary operations (“addition” and “multiplication”) that satisfies the
following axioms:

〈X,⊕, 0〉 and 〈X,⊗, 1〉 are monoids, the former is commutative.

The two operations are distributive: x⊗ (y ⊕ z) = (x⊗ y)⊕ (x⊗ z) and
(y ⊕ z)⊗ x = (y ⊗ x)⊕ (z ⊗ x).

0 is an annihilator or null wrto ⊗: x⊗ 0 = 0⊗ x = 0 for all x in M .

A semiring is commutative if x⊗ y = y ⊗ x.
It is idempotent if x⊕ x = x.



Min-Plus Semiring 26

Here is a slightly exotic structure, the min-plus semiring, aka the tropical
semiring.

〈N∞; min,+,∞, 0〉

Note that “multiplication” here is ordinary addition.

This may look weird, but it is a perfectly good commutative, idempotent
semiring.

Now let A be the cost matrix for our graph:

A(u, v) =


0 if u = v,

cost(u, v) if (u, v) ∈ E,

∞ otherwise.



Back to Shortest Paths 27

Since matrix multiplication only requires addition and multiplication (but not
subtraction or division, at least the plain version) we can perform matrix
multiplication over the min-plus semiring.

Claim: Ak(u, v) is the cost of a shortest path from u to v of length exactly k.

To see this note

Ak(u, v) = min
x

(
Ak−1(u, x) +A(x, v)

)

To get all paths of length at most k replace A by A+ I, where I is the identity
matrix (multiplicative neutral element on the diagonal, additive neutral element
everywhere else).

So it suffices to compute (A+ I)n−1 using fast exponentiation.



Digression: Automata Theory 28

Here is another wild semiring, the Kleene semiring:

〈RegΣ;∪, ·, ∗, ∅, a ∈ Σ〉

all regular languages over an alphabet Σ with operations union, concatenation
and Kleene star. Constants are ∅ and singletons {a} for a ∈ Σ.

Theorem (Kleene)

Every regular language can be denoted by an expression over this structure,
using only the given operations and constants.

These are usually called regular expressions and are critical for tools like grep:
otherwise we would not have regular expressions and would have to specify our
search patterns in terms of finite state machines.



Proof? 29

No problem, essentially use the shortest path approach with one modification:

Fix some finite state machine on state set [n] that describes a regular language
L. Let αk(p, q) be a regular expression for the language obtained by setting
p[q] as initial[final] state, and erasing all intermediate states > k. Then

αk(p, q) = αk−1(p, q) + αk−1(p, k) · αk−1(k, k)
? · αk−1(k, q)

The only difference is that here we cannot ignore “paths” that loop back to k.

The whole language is denoted by

α =
∑

p∈I,q∈F

αn(p, q)



It’s Useless 30

Note one huge problem with this approach: we are dealing with formal
expressions, not nice objects like numbers or Booleans. As a consequence, the
expressions at level k are roughly 4 times larger than at level k − 1. We cannot
really write them down.

One can try to simplify the expressions a bit, say, α+ α α or ε · α α

Alas, Conway has shown that the algebra of these expressions is not finitely
axiomatizable, so the rewrite approach won’t go very far.

Worse, it is known that the shortest expression may be exponentially larger
than the corresponding finite state machine.
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TSP 32

We are given a distance matrix dist ∈ Nn×n
∞ and we trying to find a minimum

cost tour 1, π(2), π(3), . . . , π(n), 1. Here π is a permutation of [n] with fixed
point 1.

In the general case, the distance matrix is be arbitrary.

A restricted class of TSP use distances that come from some geometry: say,
points in the plane and Euclidean distance.

In this case, the distance matrix is symmetric and obeys the triangle
inequalities:

dist(x, y) ≤ dist(x, z) + dist(z, x)

This is useful for heuristics, but is still NP-hard.



Icosahedron and Dodecahedron 33

Cost is Euclidean distance if there is an edge, ∞ otherwise.



Albania to Spain 34

A variant where we leave out the last edge (that closes the cycle).



Pointed Subsets 35

We would like to use dynamic programming, but it is far from clear what
sub-instances we should be considering. We are essentially dealing with a
labeled graph, so it might be tempting to use, say, the method of
Floyd-Warshall: temporarily remove locations k + 1, . . . , n. Alas, there seems
to be no reasonable way to extend a tour from constraint k to k + 1.

A pointed set is a pair (t,X) where t ∈ X. We are interested in pointed sets
over [n]: t ∈ X ⊆ [n].

The key observation is that we can interpret a pointed set (t,X) where 1 ∈ X
as a partial solution to TSP: we have a good path from 1 to t that includes
exactly all points in X.

Note: not a cycle, just a path.



Sub-Instances 36

Define
val(t,X) = min( cost of such a path in X )

Now we can set up a recursion like so:

val(t,X) =

cost(1, t) if X = {1, t},

min
(

val(s,X−{t}) + cost(s, t) | s ∈ X−{1, t}
)

otherwise.

In the end we compute

min
t 6=1

val(t, [n]) + cost(t, 1)



Efficiency 37

Claim: There are n 2n−1 pointed sets over [n].

Thus we have (n− 1)2n−2 pointed sets over [n] containing 1. Exponential, but
we are dealing with another NP-complete problem where the obvious brute
force attack is around nn! Recall Sterling’s approximation

n! ∼
√

2πn (n/e)n

Since we are manipulating sets, it is not so clear how expensive each step in the
recursion is. As long as we can represent the sets as reasonably short
bit-vectors (say, a few unsigned ints) we may assume constant time.

In that case, the total running time is O(n22n).


	Shortest Paths
	All-Pairs
	Matrix Multiplication
	Traveling Salesperson

