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Game Theory 2

Game theory is the mathematical study of the strategic behaviour of multiple,
rational agents (the rationality requirement seems to leave out humans).

Developed initially by economists (much like LP), but now has solid
mathematical foundations; applications in computer science.

Players participants in the game.

Actions that are available to the players.
All players make their move simultaneously.

Payoff the resulting “value” of actions taken.

Alas, this has nothing to do with interactive/recreational games.



More Precisely 3

There are n players.

Player i has a finite set of possible actions Ai.

A play is a vector a ∈×Ai.

A payoff function determines a value for each play and player.

We will focus on single-round games with just 2 players. Moreover, we consider
matrix games, where the payoff function is given by a matrix.

Question: Which strategy should each player use to maximize their payoff?

For pure strategies (always pick the same action) this is just combinatorics.
But for mixed strategies (pick a probability distribution over the actions) things
become interesting.

A profile is vector of n strategies, either pure or mixed.



Tiny Example 4

There are two players that we will call the row player and the column player.
Each player has two actions available, � and �. The payoff is determined by the
following matrix (actually, tensor):

M =
� �

� (1,−1) (−1, 1)
� (−1, 1) (1,−1)

If both players choose the same action, row wins, column loses. If they pick
different actions, it’s the other way around. Of course, neither one knows what
the other will do.

Mij = (α, β) means: if choices i ∈ Ar and j ∈ Ac occur, the payoff for the
row player is α, the payoff for the column player is β.

If you like semantic sugar, think of the contest between a shooter and a goalie
during a penalty kick.



Zero-Sum 5

The goalie example has the important property that α = −β everywhere. This
is called a zero-sum game.

For 2 players, we can think of M as being composed of two matrices R and C,
so in zero-sum game R = −C.

By contrast, in a general-sum game we drop that condition. Example:

M =

(
(1, 1) (−1,−1)

(−1,−1) (1, 1)

)
This is a variant of the well-know “game of chicken,” with potentially fatal
consequences: here both players swerve either left or right (similar to the goalie
game).

Note that one can turn a non-zero sum game of n players into a zero-sum
game of n+1 players.



Rock-Paper-Scissors 6

A well-known example where both players have 3 available actions is
rock-paper-scissors. The R matrix here looks like so: 0 −1 1

1 0 −1
−1 1 0



Clearly any player adopting a pure strategy is doomed in this game (at least in
the iterated version): the other player can always insure payoff 1.

It is far less clear what happens if both players adopt a mixed strategy.



Mixed Strategies 7

So the row-player picks some probability distribution p over the rows
(corresponding to the actions Ar), and the column-player picks another
probability distribution q over the columns (the actions Ac)

What is the expected payoff for each player?

VR(p, q) =
∑
ij

Pr[play ij]Rij =
∑
ij

piqjRij

Similarly VC(p, q) =
∑

ij piqjCij .

For example, for the Goalie game we have VR((1/3, 2/3), (2/3, 1/3)) = 1/9.

This notation is annoyingly redundant, it is better to streamline things.



Parametrization 8

For simplicity, parametrize the payoff function like so:

V (x, y) = VR((x, 1− x), (y, 1− y))

where 0 ≤ x, y ≤ 1.

Note that V (x, y) is just a polynomial in x and y, so we can easily plot pictures
of the value surface.

For example, for Goalie, we have the quadratic polynomial

V (x, y) = −1 + 2x+ 2y − 4xy

It’s easy to see that V ([0, 1], [0, 1]) = [−1, 1].



Picture Goalie 9



Half-Picture Goalie 10



How Bad Can It Be? 11

Given a strategy q by the column-player, the row-player can always try to
maximize the payoff. Hence we have the following lower bound on the row
payoff:

lb = max
p

min
q
VR(p, q)

An analogous argument works for the column-player. Since we are zero-sum,
we also get an upper bound:

max
q

min
p
VC(p, q) = max

q
min
p
−VR(p, q)

= −min
q

max
p

VR(p, q)

Hence for the row-player we get

ub = min
q

max
p

VR(p, q)



Example 12

Recall that for Goalie we have a value polynomial

V (x, y) = −4xy + 2x+ 2y − 1

= (−1 + 2y) + (2− 4y)x

= (−1 + 2x) + (2− 4x)y

Right choice for row player, depending on y:

val x y

1 1 < 1/2
0 ∗ = 1/2 don’t care
1 0 > 1/2

Therefore lb = 0. By symmetry, ub = 0. The value of the game is 0.

OK, but what if the game matrix is less symmetric?



Example 2 13

Let

R =

(
−1/2 1

1 −1

)
Here

V (x, y) = −7/2xy + 2x+ 2y − 1

Still good, the polynomial is symmetric and the value of the game is
lb = ub = 1/7.

Exercise

Check the arithmetic.



Picture 14



2-Row Games 15

We can push a bit further by keeping two actions for the row-player, but
allowing more for the column-player, so R ∈ R2×n, say

R =

(
−2 3 0
3 −1 2

)
Here the value polynomial takes the form

V (x, y, z) = 2− 2x+ y − 3xy − 3z + 6xz

= (2− 2x) + (1− 3x)y + (−3 + 6x)z

= (2− y − 3z) + (−2− 3y + 6z)x

We need to determine the optimal strategies for the row and column player.

For example, for the row player the sign of −2− 3y + 6z is critical.



Row Strategies 16



Column Strategies 17
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The three pure strategies of the column player: 3− 5x, −1 + 4x, 2− 2x.



Optimal Strategies 18

V (x, y, z) = 2− 2x+ y − 3xy − 3z + 6xz

Row Player

val x y, z

2y − 3z 0 z < 1/3 + 1/2 y row 2
1− y/2 ∗ z = 1/3 + 1/2 y don’t care
−2y + 3z 1 z > 1/3 + 1/2 y row 1

Column Player

val y z x

3− 5x 1 0 x < 1/3
4/3− z ∗ 0 x = 1/3
2− 2x 0 0 x < 1/2
−y/2 0 ∗ x = 1/2
−1 + 4x 0 1 x > 1/2



Minmax Theorem 19

Supposedly, von Neumann immediately
proposed the concept of duality for LP in a
conversation with Dantzig in 1947. This may
not be as surprising considering the following
result.

Theorem (Von Neumann, 1928)

In any zero-sum game we have lb = ub.

We’ll have more to say about the connection between linear programming and
2-person games in a while.



Prisoner’s Dilemma 20

The players (crooks undergoing separate interrogations) have a choice to
remain silent or talk (rat out the other), with payoff matrix

s t
s (3, 3) (0, 5)
t (5, 0) (1, 1)

This shows utility: u = 5− years in jail. More abstractly, the payoff is

(R,R) (S, T )
(T, S) (P, P )

with the meaning R reward, P punishment, S sucker, T temptation.

Things get interesting when

T > R > P > S



Iterated Prisoner’s Dilemma 21

Now suppose you have n players that pair off against each other (round robin)
multiple times. They all can remember their history, so they can adjust their
strategy in the next encounter according to past behaviour of the opponent.

Political scientist R. Axelrod conducted such tournaments in 1979, inviting
submissions of strategies.

Silent always remain silent.

Talk always rat out the other.

Tit-for-Tat start silent, then mimic the opponent.

Joss silent with probability 0.9 after silence, talk after talk.

Grofman silent unless last time actions were different; then silent with
probability 2/7.

Surprising Fact: unsophisticated Tit-for-Tat tends to do very well in IPD.



Application: Algorithm Analysis 22

Suppose you have a collection Aj , j = 1, . . . , n , of deterministic algorithms for
some task, as well as a list Ii, i = 1, . . . ,m , of inputs (of some fixed size).
Define

Rij = running time of Aj on Ii

For example, the Aj could be sorting algorithms, and the Ii all permutations of
[k] (so m = k!).

Thinking of (Rij) as a game matrix is mildly helpful.

We can think of column j (algorithm Aj) does well against all rows (all inputs)
iff algorithm Aj has good worst-case behavior.



Randomized Algorithms 23

A randomized algorithm can be viewed as a probability distribution over the
columns (given a suitable selection of the algorithms).

The expected running time of a randomized algorithm is good if the mixed
column strategy does well against all row strategies.

To find the best randomized algorithm we need to find the best colum
strategy.

To obtain lower bounds for randomized algorithms, we can look for a row
strategy such that the expected cost of any column strategy is high.



Lower Bounds for Sorting 24

It is well-known that comparison-based sorting requires Ω(n logn) steps on
some inputs. Here is a generalization.

Lemma

Every randomized comparison-based sorting algorithm takes Ω(n logn) steps in
expectation.

Proof.

Fix n and enumerate all deterministic algorithms that sort length n lists,
represented by a decision tree (leaves labeled by permutations of [n]). Form a
matrix R whose columns are these algorithms, and whose rows are the
permutations. Let Rij be the number of comparisons of algorithm j on input i.
Take the uniform distribution over the rows.

Each decision tree has at least n! leaves leading to a depth of d = Ω(n logn)
since logn! = n logn− n+ O(logn). But then the fraction of leaves at depth
at most d− c is at most 2−c.
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Solving a Game 26

Question: How does one solve a game?

We are supposedly dealing with rational agents, so everybody would prefer a
stable situation: given a profile, none of the players sees any advantage in
changing their strategy (while everybody else keeps theirs).

In other words, no player is motivated to make unilateral changes. The current
strategies are mutual best responses. Eternal bliss ensues.

This is called a (pure/mixed) Nash equilibrium.

So now there are two questions:

Existence When does a pure/mixed Nash equilibrium exist?

Computation How do we compute one (if it exists)?



Nash Equilibria 27

Let’s focus on 2-person games. In a Nash equilibrium, there are no alternative
strategies p′ or q′ such that

VR(p′, q) > VR(p, q) or VC(p, q′) > VC(p, q)

Here are some examples:

Goalie all probabilities 1/2

Chicken (1, 0)(0, 1); (0, 1)(1, 0); all probabilities 1/2

Prisoner rat/rat

R-P-S all probabilities 1/3



LP Interpretation 28

Suppose we have a 2-player zero-sum game R. We can write

VR(p, q) = pTRq

which makes it tempting to bring linear programming to bear on the problem of
finding a Nash equilibrium. Think of the row player as picking an optimal
strategy if forced to announce in advance.

max z

pTR− z 1 ≥ 0

p ◦1 = 1

p ≥ 0

Here 1 is the all-ones vector. The optimal value z0 of this LP is none other
than maxp minq p

TRq.



And the Dual? 29

Using C = −R we can write the dual in the form

max z′

Cq − z′1 ≥ 0

q ◦1 = 1

q ≥ 0

Note that the dual describes the strategy chosen by the column player if forced
to announce in advance.

The solution z′0 of the dual is maxq minp p
TC q = −minq maxp p

TRq.

Using the strong duality theorem for LP, one can now show

Lemma

There exists a mixed Nash equilibrium for each 2-person zero-sum game, and it
can be computed by linear programming.



Example 30

Consider again the zero-sum game given by

R =

(
−2 3 0
3 −1 2

)
The primal and dual problems have solutions

(p1, p2, z) = (4/9, 5/9, 7/9)

(q1, q2, q3, z) = (4/9, 5/9, 0,−7/9)

and we have

V (p1, 4/9, 5/9) = 7/9

V (4/9, q1, q2) = 10/9− q1/3− q2/3 = (10− 3(q1 + q2))/9

We duly have a Nash equilibrium.



Nash Equilibrium Theorem 31

The last result can be pushed a whole lot further.

Theorem (Nash 1950)

Each finite game has at least one mixed Nash equilibrium.

Finite here means that there are finitely many players, and, as usual, each
player has finitely many actions to choose from.

But note that the corresponding claim for pure strategies is false.



Continuous Relations 32

Suppose we have a non-empty, compact, convex set S ⊆ Rn, and a function
f : S → P(S) such that f(x) is likewise non-empty, compact and convex.

Let N(x) denote the collection of open neighborhoods of x. Then f is upper
hemicontinuous if

∀x ∈ S, V ∈ N(f(x)) ∃U ∈ N(x)
(⋃

f(U) ⊆ V
)

Buring Question: Why on earth should we care?

Because plain continuous functions are not quite good enough in our situation.
Recall from the examples that sometimes the optimal response by a player is
unconstrained. Any choice of a parameter (in a reasonable range) is fine. So
we are dealing with a relation, not a function.



Kakutani Fixed Point Theorem 33

Here is a cheap example. Let
B(x, r) ⊆ Rn be the closed ball
of radius r around x. Then the
following map is upper
hemicontinuous:

S = B(0, 1)

f(x) = B(x/2, cos(‖x‖)/4)

Theorem (Kakutani 1941)

Let f by upper hemicontinuous. Then f has a fixed point a ∈ S: a ∈ f(a).



Strategy Simplex 34

Since our action sets Ai = (aij) are finite, a probability distribution is simply a
vector p of non-negative reals pj such that

∑
pj = 1. A profile consists of a

vector p(i) of such distributions. Write D =×Di for the space of all profiles.

Note that even though a game is finite, D is a bounded polytope in Euclidean
space.

It is not hard to see that D is closed. Since strategies can be combined as in
λp+ (1− λ)p′, D is also convex.

In other words, we have a nice simplex, a convex, compact polytope in (Rn)n.

This is in strong contrast to the situation where we only consider pure
strategies. We have to use analysis rather than combinatorics.



Response “Function” 35

For a vector v, write v�i:x for the result of replacing vi by x. Here x may be a
point or a set. For example, (5, 1, 1, 2)�3:{a, b} = {(5, 1, a, 2), (5, 1, b, 2)}.

Define a best-response function β : D → D by β = (β1, . . . , βn) where

βi : ×
j 6=i

Dj −→ P(Di)

βi(d) = d�i:{ p ∈ Di | preferable over di }

We will not axiomatize the notion of “preferable” here: intuitively it just means
that the payoff would be at least as good or better than the current strategy,
given that none of the opponents change theirs.

We need some d? such that d? ∈ β(d?).

One can check that Kakutani’s theorem applies under these circumstances.
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vN 36

When von Neumann heard about Nash’s result, he supposedly commented
thus:

That’s trivial, you know. That’s just a fixed-point theorem.

Exercise

Von Neumann’s comment nonwithstanding, check all the details.



Example 37

Consider the 2× 3 game (slightly modified from above to keep things simple)

R =

(
−2 3 2
3 −1 2

)
With the usual parametrization we have

D1 = [0, 1] D2 = { (q1, q2) ∈ [0, 1]2 | q1 + q2 ≤ 1 }

β1(p1, q1, q2) =


[0, p1] if q2 < 5/4q1,

D1 if q2 = 5/4q1,

[p1, 1] if q2 > 5/4q1.

β2(p1, q1, q2) =


[q1, 1]× [0, q2] ∩D2 if p1 < 4/9,

D2 if p1 = 4/9,

[0, q1]× [q2, 1] ∩D2 if p1 > 4/9.

Nash equilibria: (1, 0, 1), (0, 1, 0)



And Hardness? 38

One can turn computation of a Nash equilibrium into a variety of decision
problems. There is some heuristic evidence that the most natural translations
are not NP-complete (though some are). For example, the decision question
whether there exists a second Nash equilibrium is NP-complete.

If one tries to deal with the actual function problem, not some artificial decision
problem, things get messy (as usual). It is known that one can express the
computation of a Nash equilibrium in terms of a mixed real/integer linear
program.

The problem is known to be PPDG-complete where PPDG is slightly messy
complexity class: in essence, functions that can be proved to be total by a
parity argument on directed graphs There is some evidence that there are hard
problems in PPDG.
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