
451: Hashing

G. Miller, K. Sutner

Carnegie Mellon University

2020/10/15

1 Hashing

2 Some Hash Functions

3 Universal Hashing

4 Perfect Hashing

Damn Pigeons 2

Suppose we have a map h : U → V from a large set U , the universe, to a small
set V .

We would like h to behave like an injective function.

Of course, this is impossible: there are no injective functions U → V unless
|U| ≤ |V |, and we assume the opposite. There always will be collisions
h(x) = h(y) for x 6= y.

Fine, but how about a map that behaves like an injective one at least when
dealing with reasonably small subsets S ⊂ U? If S were given ahead of time,
then this is straightforward.

But what if we have no prior information about S?

Arithmetization 3

In applications we want to store key-value pairs (k, v) in a location determined
by h(k). These details are irrelevant for the following discussion.

So, for simplicity, assume

V = {0, 1, . . . ,m− 1} = (m)

so we are dealing with a table of size m. Similarly we may safely assume that

U = {0, 1, . . . , N − 1} = (N)

In practice, think of keys as being sequences of k bytes, corresponding to a
(possibly very large) number written in base 256; so N = 28k. Even for k = 10
this is about 1.21× 1024.

Hash Functions 4

We are looking for a hash function

h : (N)→ (m)

h must be easy to compute and should distribute the elements of the universe
evenly over the hash table.

Key parameters:

N , the size of the universe (huge),

n, the number of elements in S,

m, the size of the hash table,

α = n/m, the load factor.

Again, m� N and typically n = O(m) so that the load factor may be larger
than 1, but not hugely larger. Resize the table when α gets too big.

Operations 5

The easiest case is when S is static and we are only interested in supporting
lookups once the structure has been built.

For a standard application like memoizing we need dynamic insert and lookup.

More complicated is full support for lookup, insert, delete, resize, . . . And, as
always, there are tricks: say, to speed up deletes, just set a flag and wait till the
next resize operation to actually remove the dead bodies.

We will focus on the hash function.

Dealing with Collisions 6

There are two basic methods to resolve collisions:

Chaining: keep values in containers (bins, buckets) hanging off the actual
table. Linked lists are popular for this purpose.

Open Addressing: place values into the table, moving to different slots (in
some systematic fashion) if the original one is already taken.

Another possibility is to avoid collisions altogether, provided that S is small
enough; more later.

Exercise

Recall all the implementation details of hash tables.

Come Again? 7

The requirements for a good hash function are somewhat contradictory:

it should behave just like a random function and distribute all the keys
evenly over the table, (aka the mixing property);

yet it must be easy to compute and perfectly deterministic.

Just to be clear: real randomness won’t work: we need to compute h on the
fly, not store some huge table. We have to make do with h that “appears
random.”

It’s not entirely clear that there should be any good answers.

Below are some simple standard methods; take a look at Gonnet, Baeza-Yates
for more.

http://www.baeza.cl/handbook/hbook.html

Exploiting Complexity 8

Complexity usually is an obstacle to effective algorithms, but sometimes it
actually helps.

If the data is random, we just have to make sure that h preserves enough
randomness.

If the data has a lot of structure, then it is easy to compute. But if the
fibres h−1(v) are computationally crazy, then it is very unlikely that, say,
S ⊆ h−1(v).

This sounds utterly wishy-washy, but it is known that strictly random objects
have no short description (essentially, you just have to write down all the bits;
Kolmogorov-Chaitin complexity). But regular data have a short description, so
they should not match up with highly complicated fibres.

1 Hashing

2 Some Hash Functions

3 Universal Hashing

4 Perfect Hashing

Division Method 10

A particularly simple type of hash function uses modular arithmetic

h(x) = x mod m

where the modulus m is a sufficiently large prime.

Getting one’s hands on a prime is an interesting problem, but not really an
issue here: some libraries (e.g. the STL) have a table of primes hard-coded.
The primes are chosen to be close to 2i for i = 5, . . . ,m so that one can
essentially double or half the size of the table whenever necessary for resizing.

Why Prime? 11

200 400 600 800 1000

500

1000

1500

2000

2500

3000

3500

Primality ensures a reasonable distribution of the hash values, even when the
input is highly regular, say, an arithmetic sequence. Compare this to, say, a
modulus m = 2k.

Here m = 3751, entries are the arithmetic progression x = i 64,
i = 1, . . . , 1000 .

Multiplication Method 12

Let 0 < r < 1 be irrational. Then { i · r mod 1 | i < n } is very evenly
distributed over the interval [0, 1], giving rise to a hash function

h(x) = bm(xr mod 1)c.

A typical choice is (the “other” Golden Ratio)

r = (
√
5− 1)/2 ≈ 0.618033988749894813

and m = 2k.

BTW, r is not known to be normal (every block of k decimal digits appears
with frequency 10−k), though its digits seem to be very evenly distributed.
Note that implementation requires a bit of work.

Distribution 13

100 200 300 400 500

0.2

0.4

0.6

0.8

1.0

100 200 300 400 500

0.2

0.4

0.6

0.8

1.0

Actual values on the left, sorted on the right. Looks fairly even.

Bit Operations 14

Alternatively, one can use a variety of bit-operations (shifting, logical ops, finite
fields GF(2k)) to obtain hash values. These methods tend to have a distinctly
hacky flavor.

Suppose P is a random permutation of the 256 bytes and keys x are sequences
of k bytes. So m = 256 and N = mk.

defun hash(x)
h = 0 // uint8

forall i = 1, 2, . . . , k
h = P(h⊕ x(i))

return h

Example 15

For example, for the highly regular x = (5, 10, 15, . . . , 150) we get the following
sequence of h-values during the execution of the loop. P here is a
pseudo-random permutation generated by a reasonably good RNG.

Each column is a byte, the first is 0, the last is 116 (LSD on top).

There are only 4 collisions between the sequences i [40] mod 256 for
i = 1, . . . , 50 . There are about 2.14× 1096 byte sequences of length k = 40.

Warning 16

Suppose we left off the permutation P. After all, all the xor operations make a
mess by themselves, right? Google elementary cellular automaton number 90.

Disaster strikes, for x = 6 [30] = 6, 12, . . . , 180 the sequence of h values now
looks like this:

For the same experiment as on the last slide, the frequencies of collision counts
now look like so:

bin size 1 2 3 4 9
bin count 11 3 4 3 1

More Chaos 17

Again, P is a permutation of the 256 bytes. This time h is supposed to be a
32-bit unsigned int. As before, x is a sequence of k bytes.

defun hash(x)
h = 0 // uint32

forall i = 1, 2, . . . , k
h = (h� 8)⊕ P((h� 24)⊕ x(i))

return h

Of course, it is very difficult to analyze this type of hash map.

Exercise

Suppose P is known to an adversary. Is that enough to break such a hash
table?

Cyclic Redundancy Check (CRC) 18

Here is a less hacky method, mostly used for error detection in storage devices
and networks: check whether a bit sequence got corrupted (and request a
retransmit).

Think of a (long) bit sequence a ∈ 2n as the coefficient list of a polynomial
over GF2, the two element field.

p(x) = an−1x
n−1 + . . . a1x+ a0

In coding theory, this is called a code polynomial. Now fix another polynomial
g(x) of degree d (something like 8, 12, 16, 32 . . .), the generator polynomial.

This may sound weird, but is justified by the fact that g generates an ideal in
GF2[x] (a principal ideal domain), the ideal of all code words.

Remainders 19

We can construct a hash function based on polynomial arithmetic: compute the
remainder of the code polynomial upon division by the generator polynomial.

h(p(x)) = p(x) (mod g(x))

Polynomial g has degree d, so we get a d-bit CRC, the coefficient list of the
remainder polynomial.

In applications, we transmit the coefficient list of

q(x) = xdp(x) + h(xdp(x))

If there is no transmission error, then q is divisible by g at the other end (we
are in characteristic 2).

Computation 20

How would we actually compute h?

Since we are in characteristic 2, g(x) = 0 means

xd = pd−1x
d−1 + pd−2x

d−2 + . . .+ p1x
1 + p0

This can be translated into code that runs very fast (should be written in
assembly).

h = 0
q = 1
for i = 0, . . . , n− 1 do

if ai == 1
then h = h+ q
q = x · q mod p // cheap shift and bitmasking

od
return h

The Generator 21

The question is: what should g be? E.g., g(x) = x+ 1 is just plain parity.

How about g(x) = xd + 1? For simplicity, assume n = md and write

a(x) =
∑
j<m

xjd
∑
i<d

ajd+ix
i

So we can detect a 1-bit error in each of the d coefficient blocks. But a 2-bit
error in the same block is undetected.

To get more interesting results we need to rely on algebra.

Exercise

Make sure you understand how the algorithm works on these simple generators.

Algebra to the Rescue 22

A better choice is an irreducible polynomial, so that 2[x]/(g(x)) is (isomorphic
to) the finite field of size 2d.

In fact, we should pick a primitive polynomial: the critical instruction
q = x · q mod p then generates the whole multiplicative subgroup of GF2d .
These are not so easy to produce, but the area is classical algebra, and one can
find suitable polynomials in the literature.

But note that reducible polynomials are also in use, some times of the form
(x+ 1) g(x) where p is irreducible.

Exercise

Why would it be useful to have the whole multiplicative subgroup?

Example d = 8 23

Here is a primitive polynomial of degree 8.

g(x) = x8 + x6 + x5 + x2 + 1

Hashing 256 polynomials of degree 511 produces the following collision
frequencies:

bin size 1 2 3 4 5
bin count 89 45 12 9 1

Digression: Randomness 24

So where does randomness come from in these methods?

division method number theory, primality

multiplication method number theory, irrationality

bit operations random permutations, combinatorics

CRC algebra, finite fields

For the bit operations, the space of possible hash functions is enormous:

256! ≈ 8.58× 10506 ≈ ∞

The others are built on solid axiomatics, but the theories a are complicated.

So even a clever and computationally powerful adversary will have great
difficulties foiling such hash functions. We will exploit this idea in the next
section.

RNG 25

Back to the bit operations. What about the (pseudo-)random numbers used to
generate P?

Anyone attempting to produce random numbers by purely arith-
metic means is, of course, in a state of sin.

John von Neumann

True as a matter of principle, but in the RealWorldTM there are fairly good
methods available. Mersenne Twister.

And then there is Quantis. Now if only we had a good axiomatization of
physics . . .

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
http://www.idquantique.com/random-number-generation/quantis-random-number-generator/

1 Hashing

2 Some Hash Functions

3 Universal Hashing

4 Perfect Hashing

Universal Hashing 27

Let H be a collection of hash functions (over the same domain and codomain)
and define the collision set on x 6= y ∈ U to be

Hxy = {h ∈ H | h(x) = h(y) }

Call H universal iff

∀x 6= y ∈ U (|Hxy| ≤ |H|/m) .

Equivalently, we have for all x 6= y

Prh∈H[h collision between x and y] ≤ 1/m.

A priori, it is not clear how we would go about constructing a universal family
(of easily computable functions).

Example

As a toy example, consider m = 2, N = 7 and |H| = 4. So we need to avoid
more than two collisions for any pair 0 ≤ x < y < 7.

0 1 2 3 4 5 6

h1 0 0 0 0 1 1 1
h2 0 0 1 1 1 1 0
h3 0 1 0 1 1 0 1
h4 1 0 0 1 0 1 1

It might be tempting to lower the bound 1/m in the definition of universality,
thus further reducing the probability of collisions. Alas, for large N there is not
much one can do.

Exercise

Show that for any H and bound β such that |Hxy|/|H| ≤ β for all x 6= y, we
must have β ≥ 1/m− 1/N .

Expected Collisions 29

Lemma

Suppose H is universal and we hash n ≤ m elements were h is chosen at
random from H. Then for any key x

E[collisions on x] < 1.

Proof. We need to compute

e =
∑
h

Pr[h chosen] ·# collisions on x using h.

Since Pr[h chosen] = 1/|H| the claim follows from universality: sum over all
y 6= x to get e ≤ (n− 1)/m < 1. 2

Hence the expected cost of a sequence of s operations is O(s) as long as the
load factor never goes above 1.

Example (All Functions)

Note that H = U → m is a universal family: the number of collisions on x 6= y
is mN−1, so |Hxy|/|H| = 1/m. But this collection is useless computationally:
it is tedious to generate its members at random, and we do not wish to store
large tables (most of these functions can only be represented by a table of size
about N logm).

Example (Prime Table Size)

Assume that the table size m = p is prime. Think of key x as a number being
written in base p: x = x0, . . . , xk−1 . Now consider a vector a = a0, . . . , ak−1

of numbers 0 ≤ ai < p. Each such vector gives rise to a linear function

ha(x) =
∑
i<k

aixi mod p.

It’s Universal 31

Lemma

H = {ha | a ∈ pk } is a universal collection of hash functions.

Proof.

Since Zp is a field and our hash maps are linear over Zp, ha(x) = ha(y) for
xi 6= yi implies that

ai = (yi − xi)−1
∑
j 6=i

aj(xj − yj) (mod p)

Hence there are pk−1 possible values of a which produce a collision.

But the total number of choices for a is pk.

2

Arbitrary Table Size 32

To remove the prime table size condition, choose a prime p > m larger than
the size of the universe. Define

fa,b(x) = ax+ b mod p

ha,b(x) = fa,b(x) mod m

In other words

ha,b(x) = (ax+ b mod p) mod m

where 0 < a < p, 0 ≤ b < p. Thus, we have a family H of size p(p− 1).

The functions fa,b are all affine bijections, so there are no collisions at the first
level. So how about the second level?

Collisions 33

Observe that, for any pair of source points x0 6= x1 ∈ Zp and target points
y0 6= y1 ∈ Zp, there is precisely one choice of parameters a and b such that
fa,b(xi) = yi:

a =
y0 − y1
x0 − x1

b =
x0y1 − y0x1
x0 − x1

.

So fix x0 6= x1. Thus, if we choose (a, b) ∈ Z×p × Zp uniformly at random, then
(ha,b(x0), ha,b(x1)) is also uniformly distributed.

So the probability of a collision between x0 and x1 is the same as the
probability that x0 = x1 (mod m).

Mod m 34

Write 0 ≤ x < p as

x = im+ j 0 ≤ i < q, 0 ≤ j < m

x = qm+ j 0 ≤ j < r

In either case, x mod m = j. Hence, there are r equivalence classes of size
q + 1, and m− r classes of size q. Let’s ignore the case r = 0. Then there are
q ≤ (p− 1)/m collision producing choices for x1. Hence the probability is at
most 1/m.

Exercise

Deal with the r = 0 case.

Exercise

Redo the argument with counting, no probability.

Example 35

Choose parameters

m = 256 p = 541 a = 473 b = 178

Inserting 256 random numbers produces collision frequencies

bin size 1 2 3 4
bin count 97 51 15 3

Inserting 256 numbers 20 i, i = 1, . . . , 256 produces collision frequencies

bin size 1 2 3
bin count 37 96 9

No Primes 36

A method that does not require the use of primes is based on matrix-vector
multiplications over Z2. Suppose m = 2k so that the hash values are length k
bitvectors. The universe consists of all length r bitvectors: U = 2r.

For any rectangular matrix M ∈ 2k×r we can set

hM (x) =M · x

where all the arithmetic is in Z2. This produces a family of hash functions of
size 2kr.

Suppose we have a collision at x 6= y ∈ 2r. Wlog x1 = 0, y1 = 1. Let Mc be
the version of M where the first column is changed to c ∈ 2k. Then
Mx =Mcx but Mcy ranges over all of 2k.

It follows that 2k(r−1) = |H|/m matrices produce a collision on x and y, and
H is duly universal.

Example 37

Here is a 8× 64 random matrix.

Inserting 256 random vectors produces collision frequencies

bin size 1 2 3 4
bin count 92 47 18 4

Inserting 256 numbers 20 i, i = 1, . . . , 256 produces collision frequencies

bin size 1 2 3 4
bin count 100 49 18 1

1 Hashing

2 Some Hash Functions

3 Universal Hashing

4 Perfect Hashing

Perfect Hashing 39

A hash function is perfect if it produces no collisions whatsoever on a given set
S ⊆ U .

You have to take this with a grain of salt, one of our methods uses a two-level
scheme, and there are collisions on the top level. Of course, we must have
m ≥ n = |S| in this case. The question arises if there is some reasonable way
to construct a perfect hash function. We will only deal with the static case
where S is fixed.

The first attempt simply uses a lot of space to insure the absence of collisions
with high probability: m = n2.

Expected Collisions 40

Lemma

Let m = n2 and pick a hash function randomly from a universal class. Then
the probability of having collisions is less than 1/2.

Proof. The expected number of collisions is

E[C] =

(
n

2

)
1

m
=
n− 1

2n
< 1/2.

Done by Markov’s inequality. 2

Lemma (Markov’s Inequality)

Let X be a random variable assuming non-negative integer values. Then
Pr[X ≥ k E[X]] ≤ 1/k.

Shrinking 41

Of course, a quadratic size table is quite unrealistic. However, we can get away
with many smaller tables, each of which is still quadratic in the number of
elements stored in that particular table.

To be more precise, let m = n and write ni, i = 1, . . . ,m for the number of
elements that hash to slot i under h. Thus, ni is the size of one bin (a fibre of
h).

Now consider the Boolean matrix representation A of that equivalence relation.
Clearly the total number of 1’s in this matrix is none other than

∑
n2
i , the

total number of collisions including the phony type h(x) = h(x).

But since h is universal the expected number of these collisions is
n+ 2

(
n
2

)
1
m

= 2n− 1.

Design 42

Hence we have shown

Lemma

E[
∑
n2
i] < 2n.

We can now design a perfect hashing scheme using at most 4n space as follows.

Step 1.

Pick a universal hash function at random for table size n = m.

If
∑
n2
i ≤ 4n go to step 2, otherwise repeat.

Step 2.
Do the following for each of the (non-empty) buckets obtained from Step 1.

Pick a universal hash function at random for table of size m = n2
i .

If there are no collisions on the ith bucket, stop; otherwise repeat.

Speed? 43

There are loops in this algorithm, and we have to worry about how often we
need to repeat an attempt. As it turns out, we can find the requisite hash
functions in expected linear time.

Lemma

Pr

[∑
i n

2
i > 4n

]
< 1/2

Proof. By Markov, it suffices to show that E[
∑
n2
i < 2n].

E[
∑

n2
i] = E[

∑
x

∑
y

δh(x)h(y)]

= n+ E[
∑
x

∑
y 6=x

δh(x)h(y)]

≤ n+ n(n− 1)/m < 2n

2

	Hashing
	Some Hash Functions
	Universal Hashing
	Perfect Hashing

