
451: Hashing II

G. Miller, K. Sutner

Carnegie Mellon University

2020/10/20

1 Primes and Algorithms

2 Fingerprinting

3 Rabin-Karp

4 Secure Hash

Primes 2

Primality is one of the fundamental concepts in number theory. A lot is known
about primes, yet lots of annoying questions remain, many having to do with
the distribution of primes.

50 100 150 200

200

400

600

800

1000

1200

The first 200 primes.

Gaps between Primes 3

10 20 30 40 50 60 70

200

400

600

800

1000

Prime gaps between the first 5000 primes.

Prime Pi 4

The prime pi function is defined by π(n) = # of primes in [n].

50 100 150 200

10

20

30

40

Coming to Grips 5

As the picture suggests, calculating π(n) precisely is going to be difficult.
Fortunately, it often suffices to have reasonably good approximations.

Here is a result that was first proposed by Gauss in 1792 at the tender age of
15 (he liked to compute primes in his spare time):

π(x) ≈ x/lnx

In other words, the density of primes around n is about 1/ lnn. Based on this
density observation, Gauss (unpublished) and Dedekind (1838) suggested to
use the logarithmic integral Li(x) =

∫ x

2
(ln t)−1dt to approximate π.

Alas, neither one was able to complete this line of reasoning.

Prime Number Theorem 6

The breakthrough came much later in the 19th century.

Theorem (Hadamard, de la Vallée Poussin, 1896)

π(x) = Li(x) + O
(x

lnx
e−c
√
ln x
)

for some positive constant c.

This was an independent discovery, there are several other examples for this
weird phenomenon. Sometimes, proofs are just “in the air.”

If the Riemann hypothesis holds, this can be improved to

π(x) = Li(x) + O
(√
x lnx

)

Approximations 7

It follows from the PNT that indeed

π(n) ≈ n/lnn

since lim Li(x)/(x/lnx) = 1 but lim(x/ lnx e−c
√
ln x)/(x/lnx) = 0.

Corollary

Let n ≥ 2k ln k for k ≥ 3. Then π(n) ≥ k.

Chebyshev (1848) produced a two-sided bound:

7/8 <
π(n)

n/ lnn
< 9/8

Application 8

Task: Estimate the number of k-digit primes (primes in [2k−1, 2k − 1]).

Chebyshev’s two-sided bound produces the following lower bound:

7
(
2k − 1

)
8 ln (2k − 1)

−
9
(
2k−1 − 1

)
8 ln (2k−1 − 1)

For example, for k = 100 we get 5.61× 1027. The length of the interval is
about 6.34× 1029.

Exercise

Check the arithmetic. Explore better bounds obtained from slide 10.

Comparisons 9

50 100 150 200

10

20

30

40

50

π(x)

x

log(x)

li(x) - li(2)

Dusart Bounds 10

61200 61400 61600 61800 62 000

6100

6150

6200

π(x)

x

log(x)-1

x

log(x)-1.1

Primality Testing 11

Sieve (Eratosthenes 276–196 BCE)

Miller-Rabin test (1976, 1980)

Solovay-Strassen test (1977)

Agrawal-Kayal-Saxena test (2002)

Digression: AKS 12

In 2002, Agrawal, Kayal and Saxena showed that primality testing is in
polynomial time, a major result in complexity theory: primality is trivially in
co-NP, by Pratt in NP, then in BPP, and ultimately in P.

Amazingly, the algorithm uses little more than high school arithmetic (Fermat’s
little theorem). This is in contrast to Miller-Rabin and Solovay-Strassen.

The original algorithm had time complexity Õ(n12) and has since been

improved to Õ(n6).

Alas, in practice, probabilistic algorithms are much superior. It seems AKS
can’t handle more that around 100 bits.

Finding Random Primes 13

Suppose you need a random prime with k binary digits. Here is the method:

Generate a random number n in the range [2k−1, 2k − 1].

Check if n is prime, using the algorithm of your choice.
If not, continue with n+ 1 (for the right value of 1).

This may sound a bit ham-fisted, but it’s not bad: the probabilistic tests are
fast, and the density of the primes ensures that the loop in part 2 will not
execute too often.

1 Primes and Algorithms

2 Fingerprinting

3 Rabin-Karp

4 Secure Hash

Testing Equality 15

Here is the problem we already encountered in CRC stated in its own right.

Problem: Suppose x, y ∈ 2n. We want to know whether x = y.

Of course, this is trivial as stated. So consider the following version: Alice has
x, Bob has y and it is expensive for them to communicate, so we don’t want to
send all n bits.

Alice is going to send a single, short message to Bob to convince him that
x = y: a fingerprint of x.

But we allow for the possibility of (one-sided) errors, with small probability:

x = y implies Pr[Bob accepts] = 1,

x 6= y implies Pr[Bob rejects] = 1− ε.

Modular Arithmetic 16

Here is a first shot. M is a magic number whose proper value will be
determined shortly.

Alice picks a random prime p in [M].

Alice sends p and x mod p.

Bob computes y mod p and answers correspondingly.

Clearly there are no false negatives. How about false positives?

Lemma

Pick r and let M = 2rn log rn.
Then the error probability when x 6= y is less than 1/r.

Proof 17

Let 0 6= d = x− y and consider the prime factorization of d:

d =

k∏
i=1

pdii

Note that all the pi are bounded by M . For d = 0 (mod p) we need p to be
one of these primes.

Then 2k ≤ d < p < n: the number of prime divisors of d is bounded by n. But
then the probability that one of them is equal to p is at most n/π(M).

By our choice of M and the first section, this is at most 1/r.

2

Matrix Multiplication 18

In a similar vein, suppose we have n× n matrices A, B and C, and we want to
check whether A ·B = C, quickly. So we cannot compute A ·B.

Pick x ∈ 2n uniformly at random.

Check that A · (B · x) = C · x.

Claim: Let D = A ·B − C. Then Pr[D 6= 0 ∧D · x = 0] ≤ 1/2.

If D 6= 0 there is at least one row D→k with non-zero entries. But then
D→k ◦ x = 0 with probability at most 1/2: just flip one bit in the support of the
row vector.

Counting Roots 19

Let F be a field.

Lemma (Schwartz-Zippel 1980)

Let P ∈ F[x1, . . . , xn] be of degree d and S ⊆ F a set of cardinality s.
If P is not identically zero, then P has at most d sn−1 roots in S.

Proof.

The proof is by induction on n, the number of variables. The case n = 1 is
clear.

For n > 1, define d1 and P1(x2, . . . , xn) to be the degree of x1 in P and the
coefficient, respectively. Hence

P (x1, . . . , xn) = xd11 P1(x2, . . . , xn) + stuff

Suppose a2, . . . , an ∈ S is a root of P1, by induction we know there are at
most sn−1(d− d1) such roots. Then a, a2, . . . , an could be a root for P for all
a ∈ S. Otherwise, there are at most d1 such roots. Adding, we get the claim.

2

Schwartz’s Method, II 20

The set S ⊆ F here could be anything. For example, over Q or Zp we might
choose S = {0, 1, 2, . . . , s− 1}.

To check whether P is identically zero choose a point a ∈ Sn uniformly at
random and evaluate P (a). If P is not identically zero, then

Pr[P (a) = 0] ≤ d

s

So by selecting S of cardinality 2d the error probability is 1/2.

Note that the number of variables plays no role in the error bound.

1 Primes and Algorithms

2 Fingerprinting

3 Rabin-Karp

4 Secure Hash

String Searching 22

Here is a modified version of the equality problem: find occurrences of a (short)
word W , the pattern, inside a (long) word T , the text. Mainline algorithms:

Brute force (stone age)

Knuth-Morris-Pratt (1977, MP 1970)

Boyer-Moore (1977, BMG 1979)

Rabin-Karp (1987)

Suffix trees (1973, 1976, 1995) — later

Design methods: combinatorics, finite state machines, data structures.

Sliding Windows 23

The brute force approach uses a sliding window of size m = |W | across T and
looks for matches with W :

a b a a a c a a d b b b b a

a b a a a c a a d b b b b a

Obviously, this is O(m · n) where n = |T |. Improvements are possible when
one exploits a mismatch to move the window further than just one place; we
won’t go there.

Exercise

How could one exploit mismatches?

Wishful Thinking 24

Write

T [i:k] = ti ti+1 . . . ti+k−2 ti+k−1

for the infix (factor) of T starting at position i of length k (not from i to k).

To speed things up, we would like to have a hash function h defined on Σm

with the following properties:

If T [i:m] 6= W then usually h(T [i:m]) 6= h(W).

h(T [i+1:m]) can be computed easily from h(T [i:m]) (a rolling hash).

If h is just the numerical value of the block under consideration, this is a
perfect test as far as logic is concerned. Alas . . .

Rabin-Karp Fingerprinting 25

Suppose our text is just a sequence of bytes. We can think of the search string
W as a number in base B = 256 (using 1-indexing). Here is a good choice for
a rolling h:

val(X) = x1B
m−1 + x2B

m−2 + . . .+ xm−1B + xm

It is indeed easy to compute val(T [i+1:m]) from val(T [i:m]).

val(T [i+1:m]) =
(
val(T [i:m])B

)
mod Bm + Ti+m.

Thus we only need O(m+ n) arithmetic steps to compute all the T values, so
both conditions are satisfied. Alas, the arithmetic here is too slow, we are
dealing with large numbers, not machine sized integers.

Modular Arithmetic 26

As usual, we combat large numbers by computing modulo some prime
modulus.

Compute modulo p for some suitable prime p:
a machine sized integer, so that window-shifting is O(1) regardless of m.

In other words, we generate the fingerprint val(T [i:m]) mod p and compare it
to val(W) mod p.

Since val is a function there are no false negatives.

To avoid false positives, we can verify a real hit at an additional cost of O(m)
steps using plain letter-by-letter comparisons.

Picking the Prime 27

Problem: How many false alarms are there?

Suppose s0 is the number of correct hits, and s1 the number of spurious hits.

Then the running time is O(n+ (s0 + s1)m).

Let’s say we pick p larger than m (which is easy to do).

Assuming that taking mods works like a random function (which is a bit of a
stretch but not entirely unreasonable), we can estimate s1 = O(n/p). This
yields a total running time of

O(n+ (s0 + n/p)m) = O(n+ s0m).

Eliminating False Positives 28

We can use the same approach as in the last section to choose p so that the
probability of getting a false positive at a particular location is 1/r.

Using a union bound, the probability of getting at least one false positive is
n/r. So by setting, say, r = 100n, the probability of even one error is just 1%.

This is not going to ruin running time, since the number of bits in p is still
O(logm+ logn).

Truth in Advertising 29

In the RealWorldTM, Rabin-Karp tends to be slower than KMP or
Boyer-Moore.

However, Rabin-Karp has the advantage that it generalizes gracefully to
multiple search words of the same length: keep their hashes in a container, and
check for any match in the container.

Finite state machine based methods such as KMP also generalize to multiple
search words (not necessarily of the same length), but things get a bit more
complicated, see Aho-Corasick.

https://en.wikipedia.org/wiki/Aho-Corasick_algorithm

1 Primes and Algorithms

2 Fingerprinting

3 Rabin-Karp

4 Secure Hash

More Fingerprinting 31

The idea in CRC or Rabin-Karp is to compute a fingerprint or message digest
to tackle the string equality problem. Here is another, similar idea that is closer
to cryptography:

secure hash

We want a function h : 2big → 2small so that for all inputs

a minor modification x′ of x results in h(x) 6= h(x′),

it should be hard to compute x′ such that h(x) = h(x′),

it should be hard to compute z ∈ h−1(y).

Security/Speed Trade-Off 32

A hugely important distinction is whether the goal is to guard against
unintentional errors (hard disk errors) or malicious attacks (forged documents).

In the unintentional case speed is the main goal, there is no concern about
someone trying to cheat.

For cryptographically secure applications speed is (somewhat) less important,
but one would like to have a clear understanding of the computational cost for
an adversary during an attack (security claim).

Note that this is a moving target, as hardware gets more powerful formerly
“secure” methods can become obsolete.

MD5 and SHA-1 33

Defining reports:

MD5

SHA-1

security

Warning: Both MD5 and SHA-1 date back to the 1990s and are now
considered obsolete wrto cryptographic applications. But, for plain corruption
checks (say, data in a repository) they are still fine.

https://tools.ietf.org/html/rfc1321
http://www.faqs.org/rfcs/rfc3174.html
https://en.wikipedia.org/wiki/Hash_function_security_summary

Basic Strategy 34

Let x be a byte sequence, ` its length. Pad with extra bits to

x1x2 . . . x` 1 00 . . . 00 ̂̀
where ̂̀ is ` written as a 64-bit number, and the number of 0’s is chosen to
insure that the new bit string has length a multiple of β = 512.

The padded message is processed in β-bit blocks in a number of rounds:

initialize state

mangle state and next block, get new state

output last state

In other words, it’s just a fancy finite state machine ;-)

MD5 35

The state consists of 4 words h = h0, h1, h2, h3, all unsigned 32-bit.

Each block is written as 16 unsigned 32-bit ints w0, w1, . . . , w15.

Each block is processed in 64 rounds, using each of the wi 4 times. The
behavior in each round depends on the round number and uses auxiliary
functions

f : (64)× (232)3 → 232

as well as constants Ki and si.

Naturally,
Ki = b4294967296 abs(sin(i+ 1))c

Initialize 36

The state (hash value) is initialized to

h0 = 0x01234567

h1 = 0x89ABCDEF

h2 = 0xFEDCBA98

h3 = 0x76543210

The auxiliary functions are based on the following Boolean operations:

f1(x, y, z) = ift(x, y, z)

f2(x, y, z) = (x ∧ z) ∨ (y ∧ ¬z)
f3(x, y, z) = x⊕ y ⊕ z
f4(x, y, z) = y ⊕ (x ∨ ¬z)

See the report for details.

Rounds 37

initialize

forall blocks do
u = h // 4 32-bit words
forall i = 0, . . . , 63

t = u1 + rotsi(u0 + f(i, u1, u2, u3) +Ki + wi mod 16)
u0 = u3

u3 = u2

u2 = u1

u1 = t
h = h + u

od

return h

SHA-1 38

Again, each block is written as 16 unsigned 32-bit ints w0, w1, . . . , w15 and we
process each block in sequence.

This time, the auxiliary function f : (80)× (232)3 → 232 looks like so:

f(t, x, y, z) =


ift(x, y, z) if 0 ≤ t < 20,

x⊕ y ⊕ z if 20 ≤ t < 40 or 60 ≤ t < 80,

(x ∧ y) ∨ (x ∧ z) ∨ (y ∧ z) if 40 ≤ t < 60.

Initialization 39

The state is initialized to

h0 = 0x67452301

h1 = 0xEFCDAB89

h2 = 0x98BADCFE

h3 = 0x10325476

h4 = 0xC3D2E1F0

The magic constants are less complicated, all 32-bit unsigned:

Kt =


0x5A827999 if 0 ≤ t < 20,

0x6ED9EBA1 if 20 ≤ t < 40,

0x8F1BBCDC if 40 ≤ t < 60,

0xCA62C1D6 if 60 ≤ t < 80.

Rounds 40

forall blocks do
forall i = 16, . . . , 79

wi = rot1(wi−3 ⊕ wi−8 ⊕ wi−14 ⊕ wi−16)

u = h // 5 32-bit words
forall i = 0, . . . , 79

t = rot5(u0) + f(i, u1, u2, u3) + u4 +Ki + wi

u4 = u3

u3 = u2

u2 = rot30(u1)
u1 = u0

u0 = t
h = h + u

od

return rot128(h0) ∨ rot96(h1) ∨ rot64(h2) ∨ rot32(h3) ∨ h4

Exercises 41

Exercise

Recall the requirements from the beginning of this section:

a minor modification x′ of x has h(x) 6= h(x′),

it should be hard to compute x′ such that h(x) = h(x′),

it should be hard to compute z ∈ h−1(x).

Give a plausibility argument for why these should hold for MD5.

Exercise

Repeat for SHA-1.

	Primes and Algorithms
	Fingerprinting
	Rabin-Karp
	Secure Hash

