
15-451/651: Design & Analysis of Algorithms September 3, 2019
Lecture #3: Dynamic Programming II last changed: August 30, 2019

In this lecture we continue our discussion of dynamic programming, focusing on using it for a
variety of path-finding problems in graphs. Topics in this lecture include:

• The Bellman-Ford algorithm for single-source (or single-sink) shortest paths.

• Matrix-product algorithms for all-pairs shortest paths.

• Algorithms for all-pairs shortest paths, including Floyd-Warshall and Johnson.

• Dynamic programming for the Travelling Salesperson Problem (TSP).

1 Introduction

As a reminder of basic terminology: a graph is a set of nodes or vertices, with edges between some
of the nodes. We will use V to denote the set of vertices and E to denote the set of edges. If there
is an edge between two vertices, we call them neighbors. The degree of a vertex is the number of
neighbors it has. Unless otherwise specified, we will not allow self-loops or multi-edges (multiple
edges between the same pair of nodes). As is standard with discussing graphs, we will use n = |V |,
and m = |E|, and we will let V = {1, . . . , n}.
The above describes an undirected graph. In a directed graph, each edge now has a direction (and
as we said earlier, we will sometimes call the edges in a directed graph arcs). For each node, we
can now talk about out-neighbors (and out-degree) and in-neighbors (and in-degree). In a directed
graph you may have both an edge from u to v and an edge from v to u.

We will be especially interested here in weighted graphs where edges have weights (which we will
also call costs or lengths). For an edge (u, v) in our graph, let’s use len(u, v) to denote its weight.
The basic shortest-path problem is as follows:

Definition 1 Given a weighted, directed graph G, a start node s and a destination node t, the s-t
shortest path problem is to output the shortest path from s to t. The single-source shortest
path problem is to find shortest paths from s to every node in G. The (algorithmically equivalent)
single-sink shortest path problem is to find shortest paths from every node in G to t.

We will allow for negative-weight edges (we’ll later see some problems where this comes up when
using shortest-path algorithms as a subroutine) but will assume no negative-weight cycles (else the
shortest path can wrap around such a cycle infinitely often and has length negative infinity). As a
shorthand in our drawings, if there is an edge of length ` from u to v and also an edge of length `
from v to u, we will often just draw them together as a single undirected edge. So, all such edges
must have positive weight.

2 Dijkstra’s Algorithm

Let’s recall Dijkstra’s algorithm: given a directed graph G = (V,E) with positive edge weights, the
single-source shortest path problem can be solved using Dijkstra’s algorithm (you’ve seen this in
15-210) in time O(m log n). This uses a standard heap data-structure; using a fancier data structure
called Fibonacci heaps, one can implement Dijkstra’s algorithm in O(m + n log n) time. This will
be a benchmark to keep in mind.

1



3 The Bellman-Ford Algorithm

We will now look at a Dynamic Programming algorithm called the Bellman-Ford Algorithm for
the single-source) shortest path problem. We will assume the graph is represented as a reversed
adjacency list: an array P of size n where entry v is the list of vertices from which there is an edge
to v. (Given a node v, we can find all the other nodes u such that there is an edge from u to v in
time proportional to the number of such neighbors).

How can we use Dyanamic Programming to find the shortest path from s to all other nodes? First
of all, as usual for Dynamic Programming, let’s focus first on computing the lengths of the shortest
paths. Later we’ll see how to store a little extra information to be able reconstruct the paths
themselves. The idea for the algorithm is to keep track of the shortest path from s to v using paths
consisting of k or fewer edges.

1. For each node v, find the length of the shortest path from s that uses at zero edges, or write
down ∞ if there is no such path.

This is easy: if v = s this is 0, otherwise it’s ∞.

2. Now, suppose for all v we have solved for length of the shortest path from s that uses k − 1
or fewer edges. How can we use this to solve for the shortest path that uses k or fewer edges?

Answer: the shortest path from s to v (where v 6= s) that uses k or fewer edges will first go
to some neighbor x of v using k − 1 or fewer edges, then follow the edge (x, v) to get to v.
The first part of this path is already known for all x. So, we just need to take the min over
all neighbors x of v. To update the value for s, we do the same thing, except we also have to
consider its distance using k − 1 edges, because the path might not have a predecessor.

3. How far do we need to go? Answer: at most k = n− 1 edges.

So we can set this up as a recurrence1 Let D(v, k) be the minimum length path from s to v using
k or fewer edges.

D(v, k) =


0 if k = 0 and v = s
∞ if k = 0 and v 6= s
min{D(v, k − 1), min

x∈P (v)
D(x, k − 1) + len(x, v)} otherwise

The final answer we’re looking for is D(v, n− 1). We could compute this by memoizing the above
recurrence. Alternatively we could do it bottom-up by viewing with D[v][k] as a two dimensional
array of distances. The algorithm then becomes:

Bottom-Up Bellman-Ford:
initialize: D[v][0]←if v = s then 0 else ∞
for k = 1 to n− 1:

for each v ∈ V :
D[v][k]← min{D[v][k − 1], min

u∈P (v)
D[u][k − 1] + len(u, v)}

For each v, output D[v][n− 1].

1The way the recurrence is written does not exactly mimic the description above. Here we consider the option
D(v, k−1) for all nodes v not just s. This removes extra cases in the recurrence and does not change the correctness.
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We already argued for correctness of the algorithm. What about running time? The min operation
takes time proportional to the in-degree of v. So, the inner for-loop takes time proportional to the
sum of the in-degrees of all the nodes, which is O(m). Therefore, the total time is O(mn).

So far we have only calculated the lengths of the shortest paths; how can we reconstruct the paths
themselves? One easy way is (as usual for DP) to work backwards: if you’re at vertex v at distance
d[v] from s, move to the neighbor x such that d[v] = d[x] + len(x, v). This allows us to reconstruct
the path in time O(m + n) which is just a low-order term in the overall running time.

Alternatively, we could instrument the algorithm with an additional array of parent pointers. When-
ever we compute a new shorter distance from s to v we update v’s parent to be the x which caused
that to happen. At the end these pointers are a representation of the entire shortest path tree from
s to all other vertices.

The algorithm accommodates negative edges. And it can be used to detect if a graph has a negative
cycle reachable from s. If there is no such negative cycle, then the shortest path from s to v for all
v uses at most n− 1 edges. (If it uses more than that it must use a vertex twice and thus involve
a cycle.) Thus if we were to make one additonal pass with k = n, none of the distances would
change. So if we make an additional pass and some of the distances change, this means that there
IS a negative cycle reachable from s. The cycle can be found via the use of the parent pointers
mentioned above.

4 All-pairs Shortest Paths

Say we want to compute the length of the shortest path between every pair of vertices. This is
called the all-pairs shortest path problem. If we use Bellman-Ford for all n possible destinations t,
this would take time O(mn2). We will now see three alternative Dynamic-Programming algorithms
for this problem: the first uses the matrix representation of graphs and runs in time O(n3 log n);
the second, called the Floyd-Warshall algorithm uses a different way of breaking into subproblems
and runs in time O(n3). The third allows us to adapt Dijkstra’s SSSP algorithm to the APSP
problem, even on graphs with negative edge lengths.

4.1 All-pairs Shortest Paths via Matrix Products

Given a weighted graph G, define the matrix A = A(G) as follows:

• A[i, i] = 0 for all i.

• If there is an edge from i to j, then A[i, j] = len(i, j).

• Otherwise (i 6= j and there is no edge from i to j), A[i, j] =∞.

I.e., A[i, j] is the length of the shortest path from i to j using 1 or fewer edges.2 Now, following
the basic Dynamic Programming idea, can we use this to produce a new matrix B where B[i, j] is
the length of the shortest path from i to j using 2 or fewer edges?

Answer: yes. B[i, j] = mink(A[i, k] + A[k, j]). Think about why this is true!

2There are multiple ways to define an adjacency matrix for weighted graphs — e.g., what A[i, i] should be and
what A[i, j] should be if there is no edge from i to j. The right definition will typically depend on the problem you
want to solve.
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I.e., what we want to do is compute a matrix product B = A × A except we change “*” to “+”
and we change “+” to “min” in the definition. In other words, instead of computing the sum of
products, we compute the min of sums.

What if we now want to get the shortest paths that use 4 or fewer edges? To do this, we just need
to compute C = B ×B (using our new definition of matrix product). I.e., to get from i to j using
4 or fewer edges, we need to go from i to some intermediate node k using 2 or fewer edges, and
then from k to j using 2 or fewer edges.

So, to solve for all-pairs shortest paths we just need to keep squaring O(log n) times. Each matrix
multiplication takes time O(n3) so the overall running time is O(n3 log n).

4.2 All-pairs shortest paths via Floyd-Warshall

Here is an algorithm that shaves off the O(log n) and runs in time O(n3). The idea is that instead of
increasing the number of edges in the path, we’ll increase the set of vertices we allow as intermediate
nodes in the path. In other words, starting from the same base case (the shortest path that uses no
intermediate nodes), we’ll then go on to considering the shortest path that’s allowed to use node 1
as an intermediate node, the shortest path that’s allowed to use {1, 2} as intermediate nodes, and
so on.

// After each iteration of the outside loop, A[i][j] = length of the

// shortest i->j path that’s allowed to use vertices in the set 1..k

for k = 1 to n do:

for each i,j do:

A[i][j] = min( A[i][j], (A[i][k] + A[k][j]);

I.e., you either go through node k or you don’t. The total time for this algorithm is O(n3). What’s
amazing here is how compact and simple the code is!

4.3 Adapting Dijkstra’s Algorithm for All-pairs

If all the edge lengths in the graph are non-negative, then we can run Dijkstra’s algorithm n
times, once for each starting vertex. This gives all-pairs shortest paths, and the running time is
O(n(n + m) log n). This is better than Floyd-Warshall on graphs that are sparse. In fact as long
as the number of edges is O(n2/ log n) it equals or beats O(n3).

On the other hand, it does not handle graphs with negative edge lengths. This can be remedied
by a trick discovered by Don Johnson. The idea is to somehow adjust the lengths of all the edges
so that (1) they are all non-negative and (2) the shortest paths are the same in the original and in
the modified graph.

We’re going to compute a real-valued potential on each vertex. The potential of vertex v is denoted
Φv. If we have an edge (u, v) in the graph of length `, then its length in the modified graph is
`′ = ` + (Φu − Φv).

Consider a path P of length L from u to v in the original graph. When you sum the modified
lengths of the edges on that path it’s easy to see that the potential values all telescope and you’re
left with just the starting minus the ending potential. In other words if L′ is the length of the path
in the modifed graph, we have:

L′ = L + Φu − Φv.
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This is true for any path from u to v. The potential difference is a constant independent of the
path. Thus, the shortest path from u to v in the original graph and in the modified graph are
exactly the same.

How do we find such a magic set of potentials? Here’s how. Create a new vertex called 0, and add
an edge of length 0 from vertex 0 to every other vertex. Now find the shortest path from vertex 0
to every other vertex using the Bellman-Ford algorithm. (If there is a negative cycle, this algorithm
will find it.) Define Φv to be the length of the shortest path from vertex 0 to v.

Now consider an edge (u, v) of length `. We know that

Φu + ` ≥ Φv

(If this were not true then there would be a shorter path than Φv from vertex 0 to v by going
through u.)

It follows that:
` + Φu − Φv ≥ 0

This is precisely the definition of `′. Which proves that the modified edge lengths are non-negative.
The running time of the Bellman-Ford part is O(nm). And the running time of Dijkstra’s algo-
rithm is O(n(n + m) log n). Assuming the graph is connected and that m ≥ n this simplifies to
O(nm log n).3

5 TSP

The NP-hard Traveling Salesperson Problem (TSP) asks to find the shortest route that visits all
vertices in the graph. To be precise, the TSP is the shortest tour that visits all vertices and returns
back to the start.4 Since the problem is NP-hard, we don’t expect that Dynamic Programming
will give us a polynomial-time algorithm, but perhaps it can still help.

Specifically, the naive algorithm for the TSP is just to run brute-force over all n! permutations
of the n vertices and to compute the cost of each, choosing the shortest. (We can reduce this to
(n− 1)! as follows. First of all without loss of generality, we can assume some vertex x is the start
vertex. This reduced the number of permutations to try to (n − 1)!. Secondly, as we generate
the permutation, we can keep track of the cost of the permutation up to this point. So there’s no
need to pay the O(n) cost for each permutation to add up the costs.) We’re going to use Dynamic
Programming to reduce this to O(n22n). This is still brute force but it’s not as brutish as the naive
algorithm.

As usual, let’s first just worry about computing the cost of the optimal solution, and then we’ll later
be able to add in some hooks to recover the path. Also, let’s work with the shortest-path metric
where we’ve already computed all-pairs-shortest paths (using, say, Floyd-Warshall) so we can view
our graph as a complete graph with weights between any two vertices representing the shortest
path between them. This is conveninent since it means a solution is really just a permutation.
Finally, let’s call the start vertex x.

Now, here is one fact we can use. Suppose someone told you what the initial part of the solution
should look like and we want to use this to figure out the rest. Then really all we need to know

3 Using Fibonacci heaps, Dijkstra’s algorithm runs in O(m + n logn). This gives an all-pairs algorithm whose
running time is O(nm + n2 logn). So even on dense graphs this is no worse asymptotically than Floyd-Warshall.

4Note that under this definition, it doesn’t matter which vertex we select as the start. The Traveling Salesperson
Path Problem is the same thing but does not require returning to the start. Both problems are NP-hard.
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about it for the purpose of completing it into a tour is the set of vertices visited in this initial
segment and the last vertex t visited in the set. We don’t really need the whole ordering of the
initial segment. This means there are only n2n subproblems (one for every set of vertices and
ending vertex t in the set). Furthermore, we can compute the optimal solution to a subproblem in
time O(n) given solutions to smaller subproblems (just look at all possible vertices t′ in the set we
could have been at right before going to t and take the one that minimizes the cost so far (stored
in our lookup table) plus the distance from t′ to t).

Let’s set this up as a recurrence. Let t be a vertex that is different from the start vertex x. Let S
be a set of vertices containing x and t. Define C(S, t) as follows:

C(S, t) = The minimum cost path starting from x and ending at t and hitting all vertices
in S along the way.

Here’s a recurrence for C(S, t):

C(S, t) =


len(x, t) if S = {x, t}

min
t′∈S,t′ 6=t,t′ 6=x

C(S − t, t′) + len(t′, t) otherwise

The parameter space for C(S, t) is 2n−1 (the number of subsets S considered) times n (the number
of choices for t). For each recursive call we do O(n) work inside the call, for a total of O(n22n)
time.5

The last thing is we just need to recompute the paths, but this is easy to do from the computations
stored in the same way as we did for shortest paths.

This technique is sometimes called “Subset DP”. These ideas apply in many cases to reduce a
factorial running to time to a regular exponential running time. A very nice way to implement
these kinds of algorithms in practice is to represent the set S as an integer, where a 1 bit in position
b means the presence of b in the set. This facilitates memoization, because the set is now just an
integer that can quickly used to index an array or be looked up in a hash table.

5For more, see http://xkcd.com/399/.
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