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Healthy Diet 2

Suppose we have 5 kinds of pizza toppings: pepperoni, ham, anchovies,
mushrooms, eggplant that can be combined in arbitrary amounts. We measure
the amount as x1, . . . , x5, the variables of the problem (all non-negative reals).
Each topping has an associated cost cj .

Each topping contains a certain amount of key nutrients (for Domino’s that
would be sugar, salt, fat, . . . ).

Write aij for the content of nutrient i in topping j.

Lastly, assume that there is a minimal daily allowance bi for each key nutrient.



Question 3

For a reasonable diet we want

Healthy
∑

j aijxj ≥ bi.

Cheap minimize
∑

j cixj .

Note that naturally x1, . . . , x5 ≥ 0.

For example, we might have data

aij bi
3 4 1 0 0 5
4 5 1 1 0 15
0 0 1 2 3 20

c = (4, 3, 5, 2, 1)

The optimal solution here is (0, 3, 0, 0, 20/3) with a cost of 47/3 ≈ 15.67.



Seriously 4

This is one of the most important algorithmic problems, period. There are
dozens of implementations, 100’s books, 1000’s papers, dozens of companies, 2
Nobel prizes (Kantorovich and Koopmans).

How do we solve this type of problem efficiently?

Simplex algorithm (Dantzig 1947)

Khachian ellipsoid method (1979)

Karmarkar’s interior point method (1984)

Vaidya (1987/9)

Commercial solvers can solve LPs with millions of variables and tens of
thousands of constraints.



A Definition 5

Linear Programming (LP)1 is a minimization/maximization problem where the
objective function is linear and the constraints are linear inequalities (in either
direction) or equalities.

We let n be the number of variables and m the number of constraints. The
data is given as an m× n real matrix A, m ≤ n, a m-component real vector b
and an n-component real vector c.

One has to find a real vector x ∈ Rn so that we

minimize z = cTx = c ◦x

subject to the constraints

Ax ≤ b
x ≥ 0

This is sometimes called a LP problem in canonical form.

1Programming here simply means planning.



Standard Form 6

Inequalities are quite a bit more complicated than equalities in many ways so
the special case when we only have the latter is of considerable interest.

minimize z = c ◦x

subject to the constraints

Ax = b

x ≥ 0

This an LP in standard form.

In our discussion of the simplex algorithm we will use standard form.



Variants and Transformations 7

It matters little what particular version of the problem we tackle, there are ways
to transform instances from one form to another in linear time.

Unconstrained Variables Split the unconstrained variable into a positive and
negative part x = x+ − x− where 0 ≤ x+, x−.

Inequalities a ≤ b iff −a ≥ −b iff a+ z = b for some z ≥ 0
z is a slack variable, note the implicit existential quantification.

Equalities a = b iff a ≤ b ≤ a.

Min/Max Use −c versus c.

But note that these maneuvers can increase the dimensionality or number of
constraints of the problem (which may cause computational difficulties).

Exercise

Figure out in detail how to convert a mixed LP into standard form.



Example: Flow 8

To appreciate the power of LP, note that one can easily express flow problems
as a LP.

Variables: xe: flow along an edge e.

Constraints: 0 ≤ xe ≤ c(e).

Conservation:
∑

e=ux xe =
∑

e=xu xe.

Maximize
∑

e=sx xe −
∑

e=xs xe

In terms of trying to find good algorithms for LP, this is not a good sign.



1 The Problem

2 Crash Course Linear Algebra

3 Simplex Algorithm

4 Some Details



Vector Spaces 10

Let F be a field, think Q, R, C or Fpk .

Definition

A vector space over a field F is a two-sorted structure 〈V,+, ·,0〉 where

〈V,+,0〉 is an Abelian group,

· : F× V → V is scalar multiplication subject to
a · (x+ y) = a · x+ a · y,
(a+ b) · x = a · x+ b · x,
(ab) · x = a · (b · x),
1 · x = x.

In this context, the elements of V are vectors, the elements of F are scalars.

Note that the multiplicative subgroup of F acts on V on the left (the 0 in F is
an annihilator, 0 · x = 0).



Linear Combinations 11

Given a vector space, the only terms we can build in this language (at least
after expanding out) look like

c1v1 + c2v2 + . . .+ ckvk

where ci ∈ F and vi ∈ V . This is a linear combination of the vi.

Interesting special cases:

U ⊆ V is linearly independent if for all vi ∈ U : c1v1 + c2v2 + . . .+ ckvk = 0
implies ci = 0 for all i.

U ⊆ V is spanning if for all v ∈ V there are vi ∈ U and ci ∈ F such that
c1v1 + c2v2 + . . .+ ckvk = v.



Bases 12

U ⊆ V is a basis for V if it is both linearly independent and spanning.

Theorem (AC)

Every vector space has a basis. Moreover, all bases have the same cardinality.

The dimension of V is the cardinality of any basis of V .

We are mostly interested in finite-dimensional spaces over R. Suppose we have
an (ordered) basis B = (v1, v2, . . . , vn). Then every vector v can be written
uniquely as

v = c1v1 + c2v2 + . . .+ cnvn

So we might as well write v = (c1, c2, . . . , cn), the usual coordinate notation.

We have v + v′ = (ci + c′i) and a · v = (aci).



Warning 13

Strictly speaking, we need to keep track of the corresponding basis, we really
should write something like

[v]B = (c1, c2, . . . , cn) ∈ Fn

to display the corresponding basis.

If only one basis is in play, this is slight overkill and usually omitted.

But when dealing with multiple bases it can be confusing to leave off the
reference. It is entirely standard, though.



Inner Product 14

We are mostly interested in Euclidean spaces Rn.

We can define an inner product, a norm, and a distance that all conform to our
natural geometric intuition:

x ◦ y =
∑

xiyi

‖x‖ =
√
x ◦x

dist(x, y) = ‖x− y‖

‖x+ y‖2 = ‖x‖2 + ‖y‖2 + 2x ◦ y

x ◦ y = ‖x‖ ‖y‖ cos(θ)

In terms of matrices we have x ◦ y = xT y.



Linear Maps 15

Suppose U and V are two vector spaces over F. A function f : U → V is
linear (or a vector space homomorphism) if

f(x+ y) = f(x) + f(y),

f(cx) = cf(x).

Now suppose U is n-dimensional and V is m-dimensional. Fix a basis B in U
and B′ in V . Then a linear map f can be represented by an m× n matrix A
over F:

[f(x)]B′ = A · [x]B

Again, we should write something like A = B′[f ]B but we omit the pesky
subscripts when possible.



Matrices 16

For a matrix A ∈ Fm×n write A�
i for the ith row in A, and A�

j for the jth

column; similarly A�
I and A�

J denote submatrices for I ⊆ [m], J ⊆ [n].

The rank of a matrix A ∈ Fm×n is the dimension of the vector space spanned
by all the rows of A. Why rows rather than columns?

Lemma

The rank is also the dimension of the space spanned by the columns of A.

A has full rank if its rank is min(n,m). In this case we have

m > n f is injective (a monomorphism),

n = m the matrix is invertible (non-singular), the function is a
bijection (an isomorphism),

m < n f is surjective (an epimorphism)



Convexity and Polytopes 17

R ⊆ Rn is convex if for all x, y ∈ R, the convex combination λx+ (1− λ)y is
also in R, λ ∈ [0, 1].

R ⊆ Rn is a convex polytope if it is the intersection of finitely many
half-spaces in Rn.

We are interested in polytopes of the form

{x ∈ Rn | Ax ≤ b }

where A ∈ Rm×n and b ∈ Rm, m ≤ n; in particular when the region is
non-empty and bounded.

Polytopes in 2D are called polygons, and in 3D, polyhedra.



A Polytope 18



Vertices 19

A point x in a polytope R is a vertex (or extreme point) if

∀x 6= u, v ∈ R, λ ∈ [0, 1]
(
x 6= λu+ (1− λ)v

)
Equivalently,

¬∃ d 6= 0
(
x± d ∈ R

)

Lemma

If R is a bounded, convex polytope, then R is the convex hull of its vertices.

Exercise

Determine how many vertices are needed to write an arbitrary point as a
convex combination.
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Geometry 21

For an LP in standard form we may assume that matrix A has full rank m,
otherwise we can remove redundant equations. So we are dealing with the
polytope

{x ∈ Rn | Ax = b }

and its intersection with the first orthant Rn
≥0.

This is called the set of feasible solutions or the simplex. Note that this is a
high-dimensional object, it is not a priori clear how to compute feasible
solutions, much less optimal ones.

For geometric intuition, it may be preferable to look at canonical form:

{x ∈ Rn | Ax ≤ b, 0 ≤ x }



Canonical to Standard 22

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

x+y≤1

The slack variable increases the dimension to 3.



Potential Problems 23

As we have already seen in 2D-LP, there are several potential issues to contend
with.

The set of feasible solutions is empty.

The set of feasible solutions is unbounded.

There are several optimal solutions.

For the time being, we will focus on the the critical task: we have to develop
machinery to perform “geometric operations” relating to the simplex, using
only arithmetic (so everything can be executed on a RAM).



Simplex Algorithm 24

In a nutshell, this algorithm is an iterative procedure that moves from vertex to
vertex on the simplex S, decreasing the objective function, until a minimum is
reached.

So we need to find a vertex of the feasible region. Then we iterate:

Consider all immediate neighbors of the current vertex.

If none of them provides a better value for the objective function, stop.

Otherwise pick one that does, and repeat.

Convention:
We assume an LP in standard form Ax = b where A has full rank m ≤ n.



Vertices Work 25

Lemma

If there is an optimal solution, then at least one vertex is an optimal solution.

But bear in mind that any convex combination of optimal solutions is again
optimal, so a whole edge, face, . . . of the polytope may also be optimal.

Intuitively, for the proof, we start from any optimal solution x, and march in a
non-increasing direction until we reach the boundary of the feasible region S.
Repeat till we reach a vertex.

For a vector x write sp(x) = { j ∈ [n] | xj 6= 0 } for the support of x.



Proof 26

Suppose x is not a vertex and let d 6= 0 with x± d ∈ S; hence Ad = 0. Note
that sp(x) ⊆ sp(d) since x± d ≥ 0.

Wlog c ◦ d ≤ 0.

Case 1: dj < 0 for some j

Increase λ until some component of x+ λd hits 0 from above; call this λ′.
Then x′ = x+ λ′d is feasible and has (at least) one more 0 component than x.
Furthermore, c ◦x′ ≤ c ◦x. Rinse and repeat.

Case 2: d ≥ 0.

This time, x+ λd is feasible for all λ ≥ 0.

But c ◦ d < 0, otherwise we are essentially back in case 1. Hence
lim c ◦(x+ λd) = −∞ as λ→∞. But then there is no optimal solution.

2



Vertex Characterization 27

There is a simple way to characterize the vertices of the polytope S in terms of
the column vectors of A.

Lemma

x is a vertex of R iff the vectors A�
j , j ∈ sp(x), are linearly independent.

Given J ⊆ [n], write AJ = A�
J and AJ for the remaining part.

Similarly write xJ and xJ for a vector x.

Proof.

First suppose the A�
j , j ∈ J = sp(x), are linearly dependent. Then AJ dJ = 0

for some d 6= 0 and sp(d) ⊆ sp(x).

But then Ad = 0 and x+ λd ∈ R for sufficiently small λ. Thus x is not a
vertex.



For the opposite direction assume x is not a vertex.

As before, there is some d 6= 0 such that x± d ∈ S and we have Ad = 0,
J ′ = sp(d) ⊆ sp(x) = J .

But then AJ′ has linearly dependent columns, and is a submatrix of AJ , done.

2

By adding a few independent columns if necessary, we get to following result.

Corollary

The vertices of R are exactly of the form

xJ = A−1
J b xJ = 0

where J ⊆ [n], |J | = m, AJ non-singular.



Come Again? 29

For intuition, think about the simple case J = [m]. We can rewrite the system
as

Ax =
(
AJ AJ

)(xJ
xJ

)
where the blocks are m×m and m× (n−m), respectively (the basic and
non-basic part of A). To concoct a vertex of the simplex, we can set
xJ = A−1

J b and xJ = 0.

In a sense, this particular form is really general: we can just reorder the basis.
Coordinates are an artifact, anyway.

Alas, in a real algorithm we can’t just say “up to isomorphism . . . ”



Basic (Feasible) Solutions 30

Again: suppose that AJ ∈ Rm×m is non-singular. We obtain the corresponding
vertex x = bfs(J) of the simplex by

xJ = A−1
J b

xJ = 0

This is called the basic solution associated with J .

If, in addition, x ≥ 0, then x is a basic feasible solution (bfs) satisfying all the
constraints in the LP.

Of course, we also have to deal with the objective function.



Battleplan 31

We already know that it suffices to consider bfs only (though it’s far from clear
that this is a good strategy computationally). This would suggest an approach
along the lines of

Somehow get our hands on some bfs.

Then repeatedly find a better bfs, until we reach an optimal one.

Let’s ignore the first part for the time being and focus on how to improve a bfs.



Better BFS 32

We need to modify a basis J to a new basis J ′ such that

c ◦ bfs(J ′) < c ◦ bfs(J).

until we get to an optimal solution.

Question: What changes to the basis should we consider?

Luckily, we can restrict ourselves to an operation called pivoting where one
column leaves the basis and a new one enters it. This makes perfect sense
geometrically, since it corresponds to moving from a bfs vertex to an adjacent
bfs vertex.

Problem: We need to determine a column l ∈ J to leave, and a column k /∈ J
to enter the new basis.



Simple Example 33

0 1 2 3 4 5

0

1

2

3

4

5

0 1 2 3 4

0

1

2

3

4

The original problem has m = 3, n = 2 in canonical form.



Standard Form 34

We add 3 slack variables to get standard form. Note that the objective
function ignores these. Also, it’s easy to get a starting point: J = {3, 4, 5}.
Here is a little tableaux that summarizes the data:

−1 −2 0 0 0 0

3 4 1 0 0 12
10 8 0 1 0 35
2 6 0 0 1 15

Note that A{3,4,5} is the identity matrix, so “computing” the inverse is trivial.

Also, in this case, any matrix AJ for |J | = 3 has rank 3.

Of course, not all of them satisfy the non-negativity constraints, e.g.
bfs(1, 4, 5) = (4, 0, 0,−5, 7).

The good bfs correspond to the 5 vertices of the simplex.



Feasible Solutions 35

J xJ c ◦x

{1, 2, 4}
(
6
5
, 21
10
, 31

5

)
−5.4

{1, 2, 5}
(
11
4
, 15
16
, 31

8

)
−4.625

{1, 3, 5}
(
7
2
, 3
2
, 8
)

−3.5

{2, 3, 4}
(
5
2
, 2, 15

)
−5

{3, 4, 5} (12, 35, 15) 0

To get to the optimal bfs we could do

{3, 4, 5} {1, 3, 5} {1, 2, 5} {1, 2, 4}

or

{3, 4, 5} {2, 3, 4} {1, 2, 4}



Tableaux 36

A tableaux2 is is a nice way to organize the constraints and objective function
into a single table. We want to maintain AJ = I

cJ ◦xJ + cJ ◦xJ = −z min z

AJ ◦xJ + AJ
◦xJ = b

xJ , xJ ≥ 0

After a few steps, J and J will be interleaved, and the unit vectors in AJ will
not be in the natural order, so the table will look less pretty.

Since the non-negativity constraints never change we might as well drop them
to avoid visual clutter.

Note the −z in the top right corner, this makes it easier to perform the
necessary row operations on the tableaux.

2Traditionally, our last column is placed on the left, “column 0.”



Original tableaux with slack variables, J = {3, 4, 5}:

−1 −2 0 0 0 0

3 4 1 0 0 12
10 8 0 1 0 35
2 6 0 0 1 15

After pivoting with ` = 5 and k = 2, J = {2, 3, 4}:

−1/3 0 0 0 1/3 5

5/3 0 1 0 −2/3 2
22/3 0 0 1 −4/3 15
1/3 1 0 0 1/6 5/2

After pivoting with ` = 3 and k = 1, J = {1, 2, 4}:

0 0 1/5 0 1/5 27/5

1 0 3/5 0 −2/5 6/5
0 0 −22/5 1 8/5 31/5
0 1 −1/5 0 3/10 21/10



First Pivot 38

Step 1:

−1 −2 0 0 0 0

3 4 1 0 0 12
10 8 0 1 0 35

1/3 1 0 0 1/6 5/2

Step 2:

−1 −2 0 0 0 0

3 4 1 0 0 12
22/3 0 0 1 −4/3 15
1/3 1 0 0 1/6 5/2

Step 3:

−1 −2 0 0 0 0

5/3 0 1 0 −2/3 2
22/3 0 0 1 −4/3 15
1/3 1 0 0 1/6 5/2

Step 4:

−1/3 0 0 0 1/3 5

5/3 0 1 0 −2/3 2
22/3 0 0 1 −4/3 15
1/3 1 0 0 1/6 5/2



More Generally . . . 39

Suppose we have a x = bfs(J) and we want to swap in column k. Since J is a
basis there must be some coefficient vector ξ such that

AJxJ = b

AJξJ = A�
k

We want to increase xk to some θ > 0 st

θA�
k +AJx

′
J = b

whence

x′J = xJ − θξ

Because of our non-negativity constraints we get for ξj > 0

θ ≤ xj/ξj

So we will set θ = min
(
xj/ξj | ξj > 0

)
. If the minimum occurs at `, column `

leaves the basis (min ratio).



Potential Problems 40

There is no j ∈ J such that ξj > 0.
Then we can choose θ ≥ 0 arbitrarily.

We have θ = 0.
In this case we get x′ = x but we have changed the basis and we are
dealing with a degenerate solution.

A bfs is degenerate if |sp(x)| < m. This happens in particular when the
minimization produces more than one `.

We will talk about this case next time.



More Pivoting 41

We have a method to choose the leaving column ` given the entering column
k. How should one pick k /∈ J?

We want to make progress, so c ◦x′ < c ◦x where

c ◦x′ = θck + cJ ◦(x− θξ)

c ◦x = cJx

∆ = θ(ck − cJξ)

Thus we want ck − cJξ to be negative.



Another Look 42

Here is another look at the objective function.

By minor abuse of notation, we can occasionally think of vJ and vJ as vectors
in Rn: just fill the missing positions with 0’s. By splitting a vector as
v = vJ + vJ we have

c ◦ v = cJ ◦ vJ + cJ ◦ vJ

For a general solution Av = b we get

vJ = A−1
J

(
b−AJvJ

)
Substituting, we obtain

c ◦ v = cJ ◦A
−1
J b+ (cJ − c

T
JA
−1
J AJ) ◦ vJ

= z0 + p ◦ vJ



Relative Cost 43

Note that in
c ◦ v = z0 + p ◦ vJ

the first term z0 depends only on AJ but not on v. If v is the bfs for J it is the
current cost. In the second term, p = p(J) is called the relative cost vector.

We can compute p by solving AT
J λ = cJ (simplex multipliers) and then

exploiting
cTJA

−1
J AJ = λTAJA

−1
J AJ = λTAJ

In particular when x is a bfs and we try to maximize the difference in cost
between x′ and x we need to maximize

p ◦x′J

We can use this to guide pivoting.



Example 44

Here is a version of the old pizza problem, of dimension 3× 5:

A =

3 4 1 0 0
3 5 1 1 0
0 0 1 2 3

 b =

 5
15
20

 c = (4,−3, 5, 2, 1)

We choose the basis J = {2, 3, 4}, so

AJ =

4 1 0
5 1 1
0 1 2

 AJ =

3 0
3 0
0 3



The bfs associated to J and its cost are is

x = (0, 5/6, 5/3, 55/6, 0)

c ◦x = 145/6 ≈ 24.17



Relative Cost 45

For the relative cost vector we solve AT
J λ = cJ which produces

λ = (43/6,−19/3, 25/6)

and therefore

p = (3/2,−22/3)

The second component of p corresponds to column 5, so we are going to use
k = 5.



k = 5 46

Solving AT
J ξ = A�

5 we get

ξ = (−1/2, 2, 1/2)

For the min ratio test we have pairs

j 2 3 4

xj 5/6 5/3 55/6
ξj −1/2 2 1/2

Hence we get ` = 3 and

θ = 5/6

The bfs for J ′ = {2, 4, 5} is

x′ = (0, 5/4, 0, 35/4, 5/6)

c ◦x′ = 175/12 ≈ 14.58

This is the optimal solution.
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Initial bfs 48

From the tableaux approach, we are in good shape if the instance is in
canonical form with b ≥ 0.

In general, we can use the following two-phase approach.

First, reduce (A | b) to row-echelon form R and let m′ = rk(R). If the last
entry in R�

i is not 0 for some i > r, return “infeasible.”

Otherwise, remove all rows R�
i , i > r. By slight abuse of notation, call the

result A and b.

Add m slack variables and solve

min
∑

zi

Ax+ Iz = b

x, z ≥ 0

Note that we know how to start in this case.



Phase II 49

Note that the old problem is feasible iff the new problem has optimal value 0.

So if we get some value larger than 0 we return “infeasible.”

Otherwise we remove the slack variables, and use the original x variables to
start phase II and work on the original problem.

Strictly speaking, this assumes we used simplex to solve the last problem. If the
solution is obtained some other way, extra work is needed to get a bfs.



Pivoting Problems 50

Recall that we need to bound the coefficient θ of the entering variable: we
compute

θ = min
(
xj/ξj | ξj > 0

)

If θ is unbounded, the simplex is unbounded.

If the bound is 0, we are dealing with a degenerate solution: we have two bases
that produce the same bfs.

This could lead to non-termination, we could cycle through the same bases
without ever making progress, depending on the method we use to pick the
next pivot.



Pivot Strategies 51

Smallest Coefficient

In the objective function, pick the least coefficient.

Largest Decrease

Maximize the decrease in the value of the objective function.

Maximum Gradient

Pick the variable so as to minimize

c ◦(x′ − x)

‖x′ − x‖



Anti-Cycling Strategies 52

Bland’s Rule

Always pick the eligible variable of least possible index.

It requires a bit of work that this guarantees termination.

Randomize

Pick an eligible variable at random.

Perturbation

Consider Ax = b+ ε where εi � εi+1 (e.g., εi = δi).

Then manipulate rows symbolically and use inequalities on the εi.
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