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LP Duality 2

A linear program in general form has

Objective minimize or maximize

Constraints ≤, =, ≥
Variables non-negative, non-positive, unconstrained

We will now introduce a notion of duality that associates a minimization LP
with a corresponding maximization LP. For general form this is a bit messy, see
below, so let us focus on an LP of the form

max c ◦x

Ax ≤ b
x ≥ 0



Motivation: Bounds 3

Computing the exact solution of an LP can be expensive, so it is natural to look
for lower/upper bounds on the value. How would one go about doing this?

For the last LP, any feasible point x automatically produces a lower bound on
the optimal value.

How do we get an upper bound: c ◦x ≤ β for all feasible x?

Here is another Ansatz: suppose our objective function is 5x1 + 18x2 and there
is a constraint

x1 + 3x2 ≤ 7

Multiplying the constraint by 6 and exploiting non-negativity we get

5x1 + 18x2 ≤ 6x1 + 18x2 ≤ 42

Note that multiplier 6 is optimal because of x2.

https://en.wikipedia.org/wiki/Ansatz


Pushing . . . 4

More generally, we could take any linear combinations of the rows of (A | b).
Since A�

i ◦x ≤ yi we can choose y ∈ Rm as coefficients of a linear
combination:

yTAx =
∑

yi(A
�
i ◦x) ≤

∑
yibi = y ◦ b

The goal now is to choose y in such a way that the RHS becomes as small as
possible (while staying above the objective function).

Key Idea: The question of finding the “optimal” y for this purpose can itself
be expressed as a linear program!



Primal and Dual 5

Primal Problem (P )

max c ◦x

Ax ≤ b
x ≥ 0

Dual Problem (D)

min y ◦ b

AT y ≥ c
y ≥ 0

Here A ∈ Rm×n, m ≤ n, y, b ∈ Rm, x, c ∈ Rn.

Exercise

Check in detail that this really corresponds to the upper bound motivation
outlined above.



General Case 6

Suppose we want to dualize a general form maximization problem into a
general form minimization problem. The recipe is this:

primal dual

objective max c ◦x min y ◦ b

constraints

a ◦x ≤ bi yi ≥ 0

variablesa ◦x = bi y free

a ◦x ≥ bi yi ≤ 0

variables

xj ≥ 0 aT ◦ y ≥ cj
constraintsx free aT ◦ y = cj

xj ≤ 0 aT ◦ y ≥ cj



Why Free? 7

Consider an equality constraint

a ◦x = bi

We can translate this into two inequalities

a ◦x ≤ bi
−a ◦x ≤ −bi

which then turn into two dual variables y+i and y−i and a term bi(y
+
i − y

−
i ) in

the dual objective function.

But then we could equivalently just use one free dual variable.

Lemma

The dual of the dual is the primal.



Exercises 8

Exercise

How about dualizing a minimization problem?

Exercise

Prove the dualization lemma.

Exercise

Consider the three possibilities: optimal solution, unbounded, infeasible.

What combinations of the these are possible between the primal and dual?



Strong Duality Theorem 9

Theorem (min = max)

If the primal and dual both have a solution, then their values agree.

Goes back to von Neumann, Dantzig 1947 and Gale, Kuhn, Tucker 1951.

Generalizes for example the max-flow-min-cut theorem.

The direction max ≤ min (weak duality) is easy:

c ◦x ≤ (AT y) ◦x = yTAx = yT b = y ◦ b

Alas, the opposite direction requires a bit more work.



Towards min ≤ max 10

We need a little background from analysis.

Theorem (Bolzano-Weierstrass 1817)

A continuous function on a compact domain assumes its minimum.

Note that this provides another proof for the existence of an optimal solution in
the case where the LP is feasible and bounded: the simplex is a compact set.

Our vertex-hopping proof from last time is much more constructive and
provides an actual starting point for algorithmic purposes.



Projection Lemma 11

Lemma

Let ∅ 6= X ⊆ Rn be closed and convex, z /∈ X. Then there exists a point
x̂ ∈ X that minimizes the distance ‖z − x‖.
Moreover, (z − x̂) ◦(x− x̂) ≤ 0 for all x ∈ X.

Proof.

By Bolzano-Weierstrass, the distance function ‖z − x‖ assumes its minimum at
some point x̂ ∈ X.

Since X is convex we have x̂+ λ(x− x̂) ∈ X for all λ ∈ [0, 1]. But then

‖z − x̂‖2 ≤ ‖(z − x̂)− λ(x− x̂)‖2

= ‖z − x̂‖2 + λ2‖x− x̂‖2 − 2λ(z − x̂) ◦(x− x̂)

Hence 2(z − x̂) ◦(x− x̂) ≤ λ‖x− x̂‖2 and letting λ→ 0 we get our claim.

2



Separating Hyperplanes 12

Corollary

Let ∅ 6= X ⊆ Rn be closed and convex, z /∈ X. Then there exists a hyperplane
H that separates z and X.

Proof.

Recall (z − x̂) ◦(x− x̂) ≤ 0 for all x ∈ X (obtuse angle ]zx̂x).

Define u = x̂− z and µ = u ◦ x̂, so u ◦x ≥ µ.

Then H = {x ∈ Rn | u ◦x = µ } works.

2

Note that X ⊆ H+ = {x ∈ Rn | u ◦x ≥ µ } and z ∈ H−.



Farkas’ Lemma 13

Lemma

Let A ∈ Rm×n, b ∈ Rm. Then either

1. Ax = b, x ≥ 0 for some x, or

2. AT y ≥ 0, y ◦ b < 0 for some y.

Proof. Clearly the two conditions contradict each other:
0 > y ◦ b = yTAx ≥ 0.

Now assume that (1) fails and set X = {Ax | x ≥ 0 }. Then b /∈ X, and X is
closed and convex. So there must be a separating hyperplane
H = { z ∈ Rn | u ◦ z = µ }: u ◦ b < µ and u ◦ z ≥ µ for all z ∈ X.

Hence uTAx ≥ µ for all x ≥ 0. But x is unbounded, so uTA ≥ 0.

Done letting y = u. 2



Alternatively . . . 14

For our application to duality, it is convenient to use the following simple
corollary to Farkas’ lemma.

Either there exists an x such that

Ax ≤ b
x ≥ 0

or there exists a y such that

AT y ≥ 0

y ◦ b < 0

y ≥ 0

Just add slack variables to the inequalities in the original lemma.



Proof Strong Duality Theorem 15

We still have to show that min ≤ max. It suffices to show max < β implies
min < β.

We express the condition max < β as an LP and consider it and its dual:

Ax ≤ b AT y − cυ ≥ 0

−c ◦x ≤ −β y ◦ b− βυ < 0

x ≥ 0 y, υ ≥ 0

By our assumption, the first system is not feasible.

By the corollary to Farkas, the second systems has a solution y, υ ≥ 0.



Proof 16

Case 1: υ = 0

Then the following is feasible:

AT y ≥ 0

y ◦ b < 0

y ≥ 0

By Farkas, the original primal has no solution, contradiction.

Case 2: υ > 0

By scaling we can get υ = 1.

But then y solves the original dual, and y ◦ b < β.

2



Comment 17

An alternative proof of strong duality can be based on a careful analysis of the
state of the simplex algorithm, and in particular the last state after
termination.

Alas, the arithmetic is somewhat messy and rather tedious. As always, theory
helps.



1 Duality

2 Complexity



Simplex 19

Note that the only obvious upper bound on the number of rounds is
(
n
m

)
.

Theorem (Klee, Minty 1972)

There are instances of LP with exponentially many rounds.

Careful, this depends on implementation details (choice of pivot). Also, the
slow examples tend to be rather artificial.

Theorem (Smale 1983)

The average running time of Simplex is polynomial.

There is a question whether the distribution used by Smale is relevant in
practice. It seems that often something like 2(n+m) rounds suffice.



Computing with Reals 20

To make sense out of the complexity of LP we have two choices:

Rationalize Use rational numbers instead of reals. Let L be the total
number of bits needed for these rationals, then worry about
standard complexity in terms of n, m and L.
For example, we could ask if the problem is in P. It is.

Real Computation Switch to a model of computation that accommodates the
reals (computability over algebraic structures). This may sound
crazy, but e.g. the first-order theory of the reals is decidable
(Tarski), but for integers it is undecidable.

We will ignore the second option.



Discretizing LP 21

We may as well assume that the input is given in terms of integers: So an
instance looks like

A ∈ Zm×n, b ∈ Zm, c ∈ Zn

We need to

report “infeasible” if the simplex is empty,

report “unbounded” if the objective function is unbounded on the simplex,

return an optimal solution, otherwise.

One can also concoct decision problems: “is the LP feasible?” or “is there a
feasible x of value at least/most β”.



Size of Numbers 22

It is tempting to assume that the rational version of LP is in NP: we could
guess a solution and then verify that it satisfies the given bound.

But there is a problem: the numbers must not get too large, we cannot use an
exponential number of bits.

We are saved by the fact that we are dealing with linear algebra here: one can
check that the total number of bits needed is polynomial.

Exercise

Use Cramer’s Rule to show that this is indeed the case.



Towards P 23

Theorem

Linear programming is in NP ∩ co-NP.

For the proof one can exploit Farkas’ lemma to obtain a certificate for a
no-instance.

Heuristically, once a problem drops into NP ∩ co-NP, it is often on its way
down to P. A perfect example is primality (disregarding efficiency issues).

Exercise

Figure out the details.



Khachian’s Algorithm 24

Theorem (Khachian 1979)

Linear programming can be solved in polynomial time.

Alas, this result had no direct impact on practical algorithms.

The technique used is the so-called ellipsoid method (an ellipsoid is an affine
transform of the unit sphere). The idea is to find a point inside the simplex,
and then use that point to find a vertex of optimal value.

To find the interior point, enclose the simplex in an ellipsoid E. If the centroid
of E lies in the simplex, stop. Otherwise, replace E by a smaller ellipsoid E′.

Turns out to be O(n6L2).



Ellipsoid Method 25



Karmarkar’s Algorithm 26

Khachian’s algorithm works with a sequence of exterior points to find an
interior one. By contrast, Karmarkar uses a sequence of interior points that
converges to optimality (and then finds an optimal vertex).

Uses a particular normal form, a specialized standard form.

bi = 0 for i < m, bm = 1

amj = 1.

(1/n)n is feasible, every feasible point has non-negative value.

The goal is to find a feasible point of value 0. Other forms can be transformed
to this normal form in liner time.

The algorithm turns out to be practical, with running time O(n3.5L2).

It even lead to a patent fight (thank you, AT&T), and specialized hardware.



Integer Programming (IP) 27

It is tempting to ask what happens if we try to solve a Linear Program when
the variables are required to range over Z.

As Matiyasevic has shown, solving multivariate polynomial equations over Z
turns out to be hugely more difficult than over R: a (highly nontrivial)
decidable problem goes rogue and becomes undecidable.

However, we are saved by the fact that we are dealing with linear algebra here.
As before in the rational case, the problem is in NP: the number of bits needed
to represent the relevant integers stays polynomially bounded.



Example: 3SAT as IP 28

Variables: xv indicator variable for each Boolean variable v

Constraints: 0 ≤ xv ≤ 1, 1 ≤ x′ + y′ + z′ for each clause {x, y, z}

Minimize:
∑
xv.

Here x′ = x if x appears positively, x′ = 1− x otherwise. To get a decision
problem, distinguish between feasible and not feasible.

This is an example of 0/1-Integer Programming: the variables are constrained
to 2 (and membership in NP is trivial).

Claim

0/1-Integer Programming is NP-complete.
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