
451: Online Algorithms

G. Miller, K. Sutner
Carnegie Mellon University
2020/12/01

1 Online Algorithms

2 List Update

3 Paging

Algorithm Analysis 2

Direct Analysis
Determine asymptotic time/space complexity (worst case, average,
amortized). Maybe pin down dominant term.

Complexity Theory
Use complexity classes (time, space, probabilistic) for soft upper/lower
bounds by establishing membership and hardness.

Competitive Ratio
Compare the relative performance of resource limited algorithms, in
particular against the optimal one (even though we may not know exactly
what it is).

Online versus Offline 3

Offline A traditional algorithm that has access to the whole instance.

Offline An algorithm that reads the input in a sequential manner,
essentially reading from a stream. Actions are taken while the
input is read.

So, progress is incremental: one cannot just store all the input, and then run an
offline algorithm. There is a general class of a so-called streaming algorithms
that imposes memory constraints to prevent shenanigans (compute a sketch of
the stream), but may allow for multiple scans.

We will here deal with online algorithms that take some action every time an
input item is read, in the absence of any information about the remainder of
the input. The goal is to compare them to offline algorithms.

https://en.wikipedia.org/wiki/Streaming_algorithm

Goals 4

We need to develop upper and lower bounds and hope they match.

Ideally, we want to identify optimal algorithms (if they exist).

As usual, there will be a distinction between deterministic and randomized
algorithms.

Of course, in the RealWorldTM one can measure actual performance over many
inputs and then pick the algorithm that appears to do best. Still, it won’t hurt
to have some idea why things work out the way they do.

Terminology 5

Say we are trying to solve some minimization problem. Let A be some online
algorithm that produces an approximate solution to the problem.
Write

opt(I) = optimal solution for I
A(I) = solution produced by A for I

We are interested in the competitive ratio

ρ(A) = lim sup
|I|→∞

A(I)
opt(I)

In other words, we are looking for the least ρ such that

A(I) ≤ ρ opt(I) + o(opt(I))

for sufficiently large instances I. Some authors prefer a constant instead of the
o-term. If the constant is 0 we are dealing with the strict competitive ratio.

Example: Ski Rental 6

You are vacationing at Ischgl to ski, for a long time.

You can rent skis for r Schilling, or buy a pair for b Schilling. Every morning
you have to decide to either rent or buy. Unfortunately, bad weather might
prevent you from getting on the slopes.

Question: What is the best strategy to minimize total cost?

To simplify matters slightly, assume r = 1 and b is integral.

So renting for k−1 good days and then buying on day k has total cost k− 1 + b.

https://en.wikipedia.org/wiki/Ischgl

Optimal Solution 7

The optimal, offline solution is fairly simple:

rent on good days ⇐⇒ g < b

buy on day 1 ⇐⇒ g ≥ b

Hence opt(g, b) = min(g, b).

Of course, in the online version g is not known, the weather demon is in charge
of g.

We want an algorithm A that guarantees A(b) ≤ ρ min(g, b) for some
hopefully small ρ and all g.

Where’s the Stream? 8

The algorithm knows b, the cost of buying. It then reads a bit stream

b1b2b3 . . .

where bi = 1 means the weather is good, bad otherwise.

So, if bi = 0 there is nothing to do (you are in Ischgl, after all).

For bi = 1 there is a decision to be made, but note that if you already bought
at day j < i there is again no decision.

But then we might as well assume that the sequence looks like

111 . . . 111︸ ︷︷ ︸
g

0000 . . .

where the weather demon controls g (we ignore the length of the vacation).
g =∞ is a special case.

Strategy 9

Here is a fairly natural cheapskate strategy: try to avoid buying until the last
possible moment, aka better-late-than-never.

Rent for b−1 days, then buy (assuming there are enough good days).

Analysis:
If g < b we have A(b) = g = opt(g, b).
If g ≥ b, A(b) = 2b− 1 but opt(g, b) = b.

So our competitive ratio is (2− 1/b), slightly better than 2 for b fixed, but
tends to 2 as b grows.

Burning Question: Is there a better strategy?

It Depends 10

If the strategy is deterministic, no improvement is possible.

To see why, think about the weather demon trying to make you as unhappy as
possible. Never buying is a bad idea . . .

Case 1: buy at day k < b.

weather bad after day k
optimal rent k times

actual k − 1 + b ≥ 2k

Case 2: buy at day k ≥ b.

weather bad after day k
optimal buy day 1

actual k − 1 + b ≥ (2− 1/b) b

Randomization 11

To do better against the weather demon we need to randomize our strategy.

We have to make sure the adversary is sufficiently weak, otherwise we are
essentially back in the deterministic situation:

the demon knows your probabilistic strategy, but
does not know the random bits used,
does not know the actual choices.

What would a reasonable randomized strategy look like?

Following the better-late-than-never paradigm, we could still pick a purchase
day k < b at random, using a probability distribution over [b−1]. Note that is
not so clear how the probabilities should be chosen.

Analysis 12

Case 1: g < b.
The optimal solution here is g. The expected cost of the randomized strategy is

C =
g∑
k=1

(k − 1 + b)pk +
b∑

k=g+1

g pk

Case 2: g ≥ b.
The optimal solution here is b. The expected cost of the randomized strategy is

C′ = b+
b∑

k=1

(k − 1) pk

We would like to find probabilities that minimize ρ such that C ≤ ρ g and
C′ ≤ ρ b.

LP to the Rescue 13

This seems rather messy, but note that we can collect computational evidence
by solving a linear programming problem for the probabilities and ρ.

With a lot more work one finds the solution

pi = ρ/b (1− 1/b)b−i

ρ = 1/(1− (1− 1/b)b)

So the competitive ratio of our randomized algorithm approaches
e

e− 1 ≈ 1.5819 < 2

as b gets large.

b = 100, ρ = 1.577 14

20 40 60 80 100

0.005

0.010

0.015

b = 100 Cost 15

50 100 150 200

g

50

100

150

cost

1 Online Algorithms

2 List Update

3 Paging

List Update 17

Recall a problem from the splay tree lecture: we are given a list L of length m,
and we have to support a sequence of access operations. Wlog L is a
permutation of [m] and the cost of accessing r is the position of r in L. We
would like to minimize the access costs of a sequence of n requests.

Here are some plausible strategies:

Do Nothing Do not move any element.

Move-To-Front Move the accessed element into position 1.

Single Swap Exchange the accessed element with its left neighbor.

Frequency Count Order the list according to access frequencies observed so
far (breaking ties somehow).

We showed that MTF has cost at most twice the optimal static list (sorted by
actual frequencies over the whole run).

Analysis 18

Clearly a static list is not optimal for offline algorithms. So how do these
strategies compare to the best offline algorithm?

Claim:
For Do-Nothing, Single-Swap, Frequency-Count the competitive ratio is Ω(n).

This is shown by constructing bad request sequences. On the other hand, MTF
performs fairly well:

Theorem
Move-To-Front is 4-competitive, and this bound is tight.

Upper Bound 19

So we have MTF versus B, the best offline algorithm.
Write costM and costB for the number of operations performed by the two
methods on a sequence of m requests ri, i ∈ [n], ri ∈ [m]. MTF produces a
sequence of permutations of [m]

σ1, σ2, . . . , σn+1

where σi is the state before ri is processed: σi(r) is the position of item r in
the list, the cost of accessing r. Wlog σ1 = Id.

Similarly B produces τ1, τ2, . . . , τn+1.

The cost of round i of MTF is access plus move-to-front by transposition:

costM (i) = 2σi(ri)− 1

For B we have access cost τi(ri) but we don’t know how much time is spent on
moving things around.

Inversions 20

To deal with this problem, we consider inversions. Recall that for a single
permutation π an inversion is a pair s < t, such that π(s) > π(t). A
bi-inversion is a pair s < t that

is an inversion in σ xor is an inversion in τ

This is a slightly strange measure of similarity between σ and τ . It ranges from
0 to

(
m
2

)
. Try to characterize the permutation pairs that maximize the number

of bi-inversions.

We can use the number of bi-inversions to define a potential function:

Φi = 2 number of bi-inversions wrto σi and τi
costMΦ (i) = cost(i) + Φi − Φi−1

where Φ0 = 0.

A Glitch 21

In terms of amortized analysis,

costM = costMΦ −∆Φ ≤ costMΦ ,

so it suffices to show that

costMΦ ≤ 4 costB = 4 opt

The problem here is that we don’t know all of costB : one part is access, which
is τi(ri), but we have no description of τi+1.

The easy case is when τi = τi+1: there is no extra cost. We’ll handle this first
and then deal with the other possibility.

No τ Change 22

Suppose τ ′ = τ when processing r. Clearly we only have to consider the
inversion status of pairs involving r. Call the other item s.

If s is to the right of r in σ nothing changes, so assume it’s to the left.

Moving r up front flips the inversion status of s, r wrto σ. Here is the effect on
∆Φ.

s < r s > r

τ : s–r +1 +1
τ : r–s −1 −1

Let α[β] be the number of s in row 1[2], so α+ β = σ(r)− 1. Hence

costMΦ (i) = 2σ(r)− 1 + ∆Φ

=
(
2(α+ β) + 1

)
+ 2
(
α− β)

= 4α+ 1 ≤ 4 costB(i)

For the last step note that costB(i) ≥ α+ 1.

General Case 23

But what if τ 6= τ ′?

Then B also performs a number of swaps in its list after the access operation.

Each swap adds 1 to the direct cost of B, and changes the potential at most by
2, so the previous bound still holds.

Done.

Lower Bound 24

To get a lower bound on the competitive ratio we need to unearth more
information about the mysterious algorithm B.

Lemma
B(r) ≤ m+

(
m
2

)
+ (m+ 1)(n− 1)/2

Proof.
First define an apparently brain-dead algorithm Aπ for any permutation π of
[m]: it sets σi = π for all i ≥ 2 and then just pays the cost of access in π:

costAπ ≤ m+
(
m
2

)
+
∑

i≥2 π(ri)

To average over all permutations, note that∑
π∈S

π(r) =
∑
i

i (m− 1)! = 1
2m(m+ 1) (m− 1)!

Average Cost 25

1/m!
∑
π∈S

costAπ ≤ 1/m!

(∑
π

m+
(
m
2

)
+
∑

i≥2 π(ri)

)
= m+

(
m
2

)
+ 1/m!

∑
i,π
π(ri)

= m+
(
m
2

)
+ 1/(2m!)

∑
i
m(m+ 1) (m− 1)!

= m+
(
m
2

)
+ 1/2(m+ 1)(n− 1)

2

This is quite intuitive: on average access should cost about m/2.

4 is Sharp 26

Next question: what is the worst an adversary can do to MFT? Well, always
choose the last element in the list as the next request. Total cost is (2m−1)n.

Theorem
The competitive ratio of MTF approaches 4 as m goes to infinity.

Proof.
By the last lemma we need to consider

lim
n

(2m− 1)n
m+

(
m
2

)
+ 1/2(m+ 1)(n− 1)

= 4− 6/(m+ 1)

2

1 Online Algorithms

2 List Update

3 Paging

Paging 28

Computer storage forms a natural hierarchy according to speed. Say, we have
an SSD with N pages of memory, and a cache in RAM with a capacity of k
pages. We have to process a sequence of n requests for pages.

For simplicity only charge for page misses: we get a request for a page
currently not in the cache.

We may safely assume that k < N and n is sufficiently large, so at some point
the cache fills up (if that never happens, there really is no issue). From that
point on, whenever a cache miss occurs, we remove one page from the cache
before bringing in the new one (page replacement algorithm).

Question:
Which page should be evicted so as to minimize the total number of faults?

Natural Strategies 29

Natural deterministic online strategies are

FIFO Remove the oldest page.

LRU Remove least recently used page.

LFU Remove the page least frequently used.

Of course, since the algorithm is online we don’t know the overall frequencies,
only the currently observed ones of pages in the cache.

As a practical matter, LRU seems to be far and away the best of these. Note
that it is far from clear what the average input here looks like (locality
properties).

Optimal Offline Algorithm 30

Suppose we know the full sequence of page requests. Here is what intuitively
ought to be the best strategy: greedily grab as much reprieve as possible.

FIF Furthest-in-the-Future: remove the page that appears as late
as possible in the sequence of future requests (maybe never).

Theorem
FIF is the optimal offline algorithm for paging.

A general proof is tricky, let’s just take a look at the toy model when
N = k + 1. When FIF evicts page p, the next fault will happen when p is
requested again. So the cost of FIF is essentially n/k. Could we beat this?

Adversary from Hell 31

The worst an adversary can do is to always request a page that is currently not
in the cache. Note that N = k + 1 is already enough for this purpose. This is
called an adaptive adversary and is not particularly realistic: your user program
does not obstruct the OS in this manner.

For example, suppose we run FIFO on

1, 2, . . . , k, k, 1, 2, . . . , k, k, 1, 2, . . . , k, k, 1, 2, . . .

Then every request is a miss by design; beyond the first k we always have to
evict a page. FIF will remove k, k − 1, k − 2, . . . which is easily seen to be
optimal.

This implies that the competitive ratio of FIFO cannot be better than k in the
limit. The same argument works for LRU.

Oblivious Adversary 32

A more realistic and relevant type of adversary is oblivious. It may know our
caching strategy, but it

does not know the random bits used,

does not know the actual choices made.

One can show the following, see below for a special case.

Theorem
Suppose a randomized paging algorithm A has competitive ratio ρ against
oblivious adversaries. Then ρ ≥ Hk ≈ ln k, the kth harmonic number.

Blocks 33

Suppose we have some online algorithm A and our requests are

r = r1, r2, . . . , rn

We can partition r into disjoint blocks

r = B1, B2, . . . , Bβ

marching from left to right as follows: each block is a maximum contiguous
sequence of requests in which exactly k distinct pages are requested. Note that
the blocks depend on the algorithm as well as r.

E.g., starting with an empty cache, the next request after B1 causes the first
eviction.

Sometimes it is slightly more convenient to assume that the algorithm starts
with a full cache (the same if we compare two methods). In the limit, this
makes no difference.

But Why? 34

Recall that we are dealing with page replacement algorithms only.

It is not unreasonable to expect such algorithms to have a natural persistence
property:

Suppose a page is placed into cache during block B.
Then it will stay there for the duration of the block.

This has a nice consequence: instead of dealing with the whole block, we can
just focus on the first occurrence of each page. In essence, we can assume that
a block simply has length k.

Example: LRU 35

Consider the blocks B1, . . . , Bβ defined by LRU.

Claim 1: LRU faults at most k times per block.

Use the persistence property: once a page is placed into the cache, it cannot be
evicted until k other pages get requested. But that will happen in the next
block.

Claim 2: FIF has at least β − 1 faults.

The first request p in B2 produces a page fault since B1 is maximal. After it is
handled, the cache contains p and k − 1 other pages. Done by induction.

So the competitive ratio is at most

kβ

β − 1 → k for β →∞

It follows LRU has competitive ratio k.

Marking Algorithm 36

Here is a simple randomized paging algorithm MARK that is surprisingly good
in the theoretical sense. There are other versions, this one is probably the
simplest one.

Any page in the cache may be marked or unmarked; it is marked when it first
enters the cache. Say p is the next request.

p not in cache:
– if all pages are marked, unmark everybody
– randomly remove an unmarked page
– insert p marked

So we try to keep pages that have been inserted recently, a method vaguely
reminiscent of LRU.

Note that MARK has persistence: to get evicted a page has to be unmarked,
and that happens in the next block.

Analysis 37

Let’s use the blocking idea from above again: k different requests per block.
At the beginning of a block, all pages in the cache are unmarked.

Let C be the cache contents at the beginning of block B. Call a page
requested during B old/new if it is/isn’t in C. Of course, an old page may be
gone by the time it is requested. Let ν be the number of new pages during B.

The ν new requests all lead to evictions, the real question is what happens with
old requests p: this time there are two possibilities

p is still there, no eviction necessary,

p has been evicted (unfortunately), and needs to be reinserted.

Tiny Example 38

k = 6, initial cache [k], requests p = 7, 8, 9, so ν = 3.

Extra miss: on p = 2 at time 5.

time
0 1 2 3 4 5 6

p - 7 6 8 5 2 4

cache

6 6
5 5
4 9
3 2
2 8
1 7

Larger Example 39

k = 30, ν = 11. One of the 6 kick-out-and-reinsert cases is highlighted in cyan.

More Analysis 40

We may safely assume that all the new requests come first, that can only drive
up the number of old page misses.

Now consider step ν + 1: the probability of a miss is ν/k and the expected
number of misses is ν + ν/k.
At step ν + 2, the probability of a miss is

(ν + ν/k)/k = ν(k + 1)/k2 ≤ ν/(k − 1),

and so on, and so forth.

Summing the expected total cost of all (new + old) requests is at most

ν + ν

k−ν−1∑
i=0

1
k − i ≤ νHk

Optimality? 41

Write νi for the new requests in block Bi. The vague idea behind the next
claim is that we can amortize good performance by the optimal algorithm by
looking at adjacent blocks. More precisely, define

δi = # elements in the MARK, but not the FIF, cache

a sort of potential function.

Claim: FIF has at least 1/2
∑

νi faults.

Write ci for the cost of FIF during block Bi (this a MARK block). We will
show that

ci ≥ max(νi − δi, δi+1)

Proof 42

ci ≥ νi − δi

During block Bi, the FIF cache differs in at most δi places from the MARK
cache, so it must have at least νi − δi faults.

ci ≥ δi+1

The k pages requested during block Bi must be in the cache when block Bi+1
starts; furthermore, each such page was in the FIF cache at some point during
the block. But the FIF cache at the beginning of block Bi+1 has only δi+1 of
these pages, so there were at least that many evictions.

Putting Things Together 43

Max is a bit awkward, so lets use the average instead, (νi − δi + δi+1)/2.
Summing over all blocks we get a lower bound for the total cost of FIF:

1/2
(∑

νi + δβ − δ0
)

We have δ0 = 0, and δβ is small compared to the sum, so we get a lower
bound of 1/2

∑
νi

It follows that our marking algorithm is 2Hk = O(log k) competitive.

Again, this is against an oblivious adversary, and indeed optimal. There is no
defense against an adaptive adversary.

	Online Algorithms
	List Update
	Paging

