
15-451: Algorithms December 3, 2020

Lecture Notes: Resistive Model of a Graph and Random Walks

Lecturer: Gary Miller Scribes:
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0 Motivation

Consider a recommendation system that recommends viewers to movie titles. We can represent

this system as a bipartite graph G = (L,R,E) with a ranking function r where L is the set of

viewers, R is the set of movies, E is the set of edges, and r : E → N gives for (v,m) ∈ E viewer v’s

ranking of movie m.

Using this model, we want to answer the following question: Should we recommend movie m to

viewer v? In other words, how can we assign some sort of score score(v,m) to a recommendation

of m to v. (Note: (v,m) need not be an edge in G - we want to be able to generate these recom-

mendation scores regardless of whether a v has a ranking for m). Let’s explore a couple of ideas.
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Idea 1

score(v,m) =
1

distG(v,m)

where we define distG(v,m) as follows: Assign a weight to each edge (i, j) in the graph given

by

wij =
1

r(i, j)

and the weight of a path P is given by

w(P ) =
∑
e∈P

we

Now, let

distG(v,m) = min
vPm

W (P )

Idea 2

score(v,m) = max
vPm

w(P )

where we define

w(P ) = min
e∈P

r(e)

However, these two ideas don’t help us since we never take into account multiple paths between

v and m to add to the score. Intuitively, the more paths there are between a viewer and a

movie, the higher the score(v,m) should be. We can amend this by considering the following idea:

Idea 3

score(v,m) = max flow from v to m

This is still not good enough, since max flow won’t reward shorter paths between viewers and

movies. This motivates two other ideas:

Idea 4

View the edges as conductors, and let

score(v,m) = hit(v,m) + hit(m, v)

where hit(v,m) denotes the expected length of a random walk from v to m
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Idea 5

Consider a random walk from v to m

score(v,m) = “the effective conductance” between v and m

We will show that Ideas 4 and 5 are equal up to scaling. We will also explore whether effective

conductance and “commute time” provide a better scoring system.

The rest of the lecture will proceed as follows:

• Provide formal definitions

• Develop a Basic Theory

• Give efficient algorithms

• Find applications

1 Resistance Theory

1.1 Some preliminaries

We’ll first use some basic laws of physics adn shit

Ohm’s Law

Let C = conductance, R = resistance, V = voltage, and i = current, then

C =
1

R
i = CV =

V

R
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Resistors in Series

Series of resistors will act like a single resistor

R = R1 + ...+Rn

C =
1

(1/C1 + 1/C2 + ...+ 1/Cn)

i =
V

R
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Conductors in Parallel

Conductors in parallel will act like a single conductor

C = C1 + ...+ Cm

1.2 Effective Resistance
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Definition 1. Let G be a network of resistors, where the conductance on each individual edge is

given by the edge weight. The Effective Resistance (Conductance) between two vertices a and

b of in G is the amount of electrical resistance (conductance) between them:

Rab =
Vab
iab

Cab =
1

Rab

Now, to compute the effective resistance from a to b, we will make use of Kirchoff’s Law

Kirchoff’s (1st) Law

The current flowing into a node must be equal to the current flowing out of it.

(This will be the case for all nodes other than a and b)

Now, consider the following example (the left is the weighted graph, while the right represents the

voltage and current flow)

Using Ohm’s Law, we have that

i1 = C1(V − V1)

i2 = C2(V − V2)

i3 = C3(V − V3)

The residual current is given by i1 + i2 + i3. Kirchoff’s Law tells us that this quantity must equal

0, hence

C1(V − V1) + C2(V − V2) + C3(V − V3) = 0 =⇒ (C1 + C2 + C3)V = C1V1 + C2V2 + C3V3

Setting C = C1 + C2 + C3 gives us

CV = C1V1 + C2V2 + C3V3 =⇒ V =
C1

C
V1 +

C2

C
V2 +

C3

C
V3
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Observe that we’ve written V as a convex combination of V1, V2, V3. The residual current is equal

to CV − C1V1 − C2V2 − C3V3

Now, we’ll consider the general case for some arbitrary network G, where G = (V,E,C) where

C : E → R+ and V = {1, . . . , n}. Also, define

d(a) =
∑

(a,b)∈E

C(a, b)

Define a corresponding adjacency matrix A whose entries are given by

Aab =

{
C(a, b) (a, b) ∈ E
0 o.w.

The Laplacian matrix of G (denoted by L(G) or simply L) is given by

Lab =


d(a) a = b

−Cab (a, b) ∈ E
0 o.w.

Notice that

L = D −A where D =

d(1) 0
. . .

0 d(n)


Let v be a vector representing the voltage setting of each node; This would mean that (Lv)i
calculates the residual current at node i. Now, suppose we are interested in the inverse, i.e. we

inject current into each node and observe the voltage. The net current injected should be zero (in

order to abide by Kirchoff’s law). All we’d need to do is solve for Lv = i (where i represents the

vector of currents)

Now, let us try computing the value of the effective resistance between nodes 1 and n (i.e. R1n.

We can approach this computation in two different ways

Method 1: Solve

(∗) L


1

V2

...

Vn−1

0

 =


i

0
...

0

−i

 i =
V

R
, V = 1, R =

1

i

and return 1
i

(∗) This is called a boundary valued problem. In our case, V1 and Vn are the boundary; (V1, ..., Vn) is

called harmonic, since all of the interior Va can be written as a convex combination of its neighbors.

Maximum Principle: If f is harmonic, then its min and max are on the boundary.

Proof. If V is interior, then there must exists neighbors Va and Vb such that Va ≤ V ≤ Vb.
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Uniqueness Principle: If f and g are harmonic with the same boundary values, then f = g

Proof. f − g is harmonic, with zero’s at both boundaries, hence f − g ≡ 0, therefore f = g.

Method 2: Solve

Lv =


1

0
...

0

−1


and return R1n = V1 − Vn (How do we know that an assignment of v exists?)

Another way to view the Laplacian: Boundary Operator (vertex-edge matrix): Bn×m and

pick a direction to orient each edge. Consider the following example

Let C1, ..., Cm denote the conductances of e1, ..., em

C =

C1 0
. . .

0 Cm


Note that if f is a flow then Bf will equal, for each vertex, the surplus flow at that vertex. Thus

−Bf will be the needed injected flow at each vertex.

Observe that
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• BTv ≡ the voltage drop across each edge

• CBTv ≡ minus the current flow along each edge

• C−BTv ≡ the current flow along each edge by Ohm’s Law.

• (−B)C(−BTv) ≡ the need injected current at each vertex

This gives us that L = BCBT

If G is a connected graph, we’re interested in answering the following questions:

• What is rank(L)?

• What is ker(L)?

Consider

xTLx = xTBCBTx = (BTx)TCBTx =
∑

(a,b)∈E

Cab(xa − xb)2

thus

xTL = 0 ⇐⇒ ∀(a, b) ∈ E (xa − xb)2 = 0 = (xa − xb)

Therefore if G is connected =⇒ ∀a, b xi = xj

Hence, the kernel of L is 〈

1
...

1

〉 while the rank is n− 1

Claim 1. Lx = 0 iff xTLx = 0

Proof. The forward direction is clear, the backwards direction is

xTLx = xTBCBTx = (C1/2BTx)T (C1/2BTx) = 0

which means that C1/2BTx = 0 which means that BC1/2C1/2BTx = 0, hence Lx = 0

1.3 Current and Energy/Power Dissipation
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Newton said that

Energy ≡ Force · Speed

≡ Volt · Current

≡ V i
≡ CV 2 ≡ i2R

In our network, this means that Energy = 1
2

∑
x,y |ixy| · |vx − vy|

vTLv = vTBCBT v = (BT v)TC(BT v) =
∑

oriented(x,y)∈E
Cxy(Vx − Vy)2 = Energy

1.4 Flows

We define two types of flows in our network:

Definition 2. A flow is a function f : E → R over oriented edges

Definition 3. potential flow = {CBTv | v ∈ Rn} ≡ PG

Definition 4. circulation flows = {f ∈ Rm | Bf = 0} ≡ CG

Assume G is connected and we are given its spanning tree T .

Claim 2. CG is a subspace, and the dim(CG) = m− n+ 1

Note that:

• Proving that this is a subspace is easy.

• E \ T denotes the non-tree edges of G, hence |E \ T | = m− n+ 1

• Any flow on E \ T can be extended to CG on G (to be shown in homework)

• f, g ∈ CG and f \ T = g \ T then f = g

Claim 3. The dimension of the subspace PG is n− 1

Claim 4. fC ∈ CG and gP ∈ PG then fTCRgP = 0 where R =

R1 0
. . .

0 Rm


Proof. ∃v such that gP = CBTv. Now we have

fTCRgP = fTCRCB
Tv = fTCB

Tv = (BfC)Tv = 0Tv = 0

(observe that we use the fact that RC = I)

Therefore, CG;PG spans Rm (all flows) i.e. ∀f ∈ Rm, ∃!fC , fP such that f = fC + fP

Definition 5. fa =
∑

a6=b fab where a, b ∈ V
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Definition 6. f is a unit flow from a to b if:

• f is a flow

• fa = 1 and fb = −1

• fx = 0 for x 6= a, b

Thomson’s Principle: If the following two conditions hold, then fTRf ≤ gTRg

• f is unit potential flow from a to b

• g is any unit flow from a to b

Proof. We know that g = f + fc where fC ≡ circulation

gTRg = (f + fC)TR(f + FC) = fTRf + 2fCRf + fTCRfC = fTRf + fTCRfC ≥ fTRf

Thus Thomson Principle gives yet another equivalent definition effective resistance is:

Definition 7. The effective resistance from a to b (ERab) can be defined as fTPRfp, where fp
denotes the unit potential flow from a to b.

Rayleigh’s Monotonicity Law: If R ≥ R then ERab ≥ ERab

Proof. Let f be the unit potential flow in GR, and g be the unit potential flow in GR̄

ERab = gTRg =
∑
e∈G

g2
eRe

≥
∑
e∈G

g2
eRe

≥
∑
e∈G

f2
eRe (by Thomson)

= fTe Rfe = ERab

These two results allow us to show that Rab is a metric. That is:

HW: Show that R(ab) is a metric space, i.e.,

• Rab ≥ 0

• Rab = 0 iff a = b

• Rab = Rba

• Rac ≤ Rab +Rbc
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2 Random Walks

Let G = (V,E,w) be a (possibly directed) graph where

wa = w(a) ≡
∑

(a,b)∈E

wab

Pab ≡
wab

wa

Definition 8. Random walk on G: Suppose at a given time we are at a ∈ V , we move to b with

probability Pab

Ex. Let V be all orderings of a deck of 52 cards. Pab will be the probability of going from some

order a to an order b in one shuffle.

Fun question: Why do professionals play after 5 shuffles?

We can consider two views of a random walk:

• Particle view (the definition above)

• Wave view: there’s a large number of simultaneous independent walkers

x(i) ≡ distance at time i

x(i+1) = AD−1x(i)

Definition 9. Access Time, or Hitting Time Hab is the expected time to visit b starting at a.

Definition 10. Commute Time: Kab = Hab +Hba

Definition 11. Cover Time is the expected time to visit all nodes (we take the max over all

starting nodes)

Definition 12. Mixing Rate: TODO in a future lecture

2.1 Random Walks on Symmetric Graphs

Idea: View a random walk as a walk on a network of conductors.

Input: G = (V,E,C) where C(a, b) = C(b, a)

Consider a random walk starting at x and ending at b. Let hx be the probability we visit a before

b when starting at x, where a 6= b. Consider the following example:
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We know that ha = 1 and hb = 0. What if we want to compute h2? We know that this quantity

must be greater than 0.5. After some calculations, we can observe that hx = 0.75.

Example 2:

Claim 5. hx =
∑

y Pxyhy

We know that Pxy ≥ 0 and that
∑

y Pxy = 1. This means that hx is a convex combination of its

neighbors.(Also, h is harmonic with boundary a, b!).

Now, lets construct an identical electrical problem. Consider Va = 1 and Vb = 0. ∀x 6= a, b,

Vx =
∑

y
Cxy

Cx
Vy. Observe that

Cxy

Cx
= Pxy, which means h and V equal.

Theorem 1. Set Va = 1 and Vb = 0; Let x 6= a, b “float” and then let Vx be the probability that we

visited a before v. The residual current at x will be 0.
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In the above example, hc equals 0.75, and a = v1 while b = vn. Algebraically we get

L


1

∗
...

∗
0

 =


∗
0
...

0

∗


In general, we can have multiple sinks and goals:

We can compute this with one Laplacian solve.

2.2 Interpretation of Current as Random Walk

Consider one unit of potential current flow from a to b, say i. What does ixy correspond to in a

random walk from a to b?

Theorem 2. ixy will be the expected net number of traversals of edge (x, y) in a random walk from

a to b.

Proof. Let Ux be the expected number of visits to x before reaching b starting at a. For HW, show

that
∑

y UyPyx (Note:
∑

y Pyx 6= 1). Now, recall that Cx =
∑

y Cxy, and note that

CxPxy = Cx

(Cxy

Cx

)
= Cxy = Cyx = Cy

(Cyx

Cy

)
= CyPyx

Thus,

Ux =
∑
y

Uy
CyPyx

Cy
=
∑
y

Uy
PxyCx

Cy

Therefore, Ux
Cx

=
∑

y Pxy

(
Uy

Cy

)
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Here, the voltage Vx = Ux
Cx

, and its recurrence is Vx =
∑

y PxyVy (and the residual current at x is 0).

This means that Vx is harmonic with boundary conditions: Vb = 0 and Va = Ua
Ca

for the “correct”

Ua

Define jxy as the current on edge (x, y), and observe that

jxy = (Vx − Vy)Cxy =
(Ux

Cx
− Uy

Cy

)
Cxy = Ux

(Cxy

Cy

)
= UxPxy − UyPyx

Here, UxPxy is the expected number of traversals from x to y (similarly, UyPyx is the expected

number of traversals from y to x). This means that jxy is the expected net number of traversals

from x to y.

Now, we wish to show that the net current flow is 1, i.e.
∑

y jay = 1. This value must be 1, since

we must have had to leave a once, for good, to get to b (which means we never traveled that edge

back).

Now, we are interested in computing Ua. Consider a as the first vertex, while b is the nth vertex.

Solve

Lv =


1

0
...

−1


Set

v′ = v− Vn


1

0
...

1


i.e. set Vn = 0. Hence V1 = U1

C1
=⇒ U1 = V1C1, which means we have found Ua! Also, V = ERab

and Ua = Ca · ERab

2.3 How to compute hitting time

Recall that Hxb denotes the expected time to reach b from x. Let Hx = Hxb for some fixed b.

Consider the following recurrence:

Hb = 0

Hx = 1 +
∑
y

HyPxy (x 6= b)

We can think of Hx as a voltage Vx:

Vb = 0

Vx = 1 +
∑
y

(Cxy

Cx

)
Vy
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CxVx = Cx +
∑
y

CxyVy

CxVx −
∑
y

CxyVy = Cx

Observe that the LHS is the graph Laplacian, while the RHS is the residual current. There are

n− 1 constraints, and by adding constraint for vn = b

Lv− =


C1

...

Cn−1

δ


Vn = 0 C =

∑
i

Ci

where δ = Cn − C

Now, if we wish to compute the hitting time from a vx to vn, solve the above equation for Vx.

To solve for the commute time between a (v1) and b (vn), we have two methods:

1. Solve the following two

Lvb =

 C1

...

Cn − C

 Lva =

C1 − C
...

Cn


H1n = V b

1 − V b
n and Hn1 = V a

n − V a
1 . Set v = vb − va (and so Vi = V b

i − V a
i ), and return

K1n = H1n +Hn1 = V1 − Vn

2. Solve the following

L(vb − va) = Lvb − Lva

This is equal to  C1

...

Cn − C

−
C1 − C

...

Cn

 =

 C
...

−C

 = C

 1
...

−1


Then, solve for

Lv =

 1
...

−1


And return C(V1 − Vn) where (V1 − Vn) = ER1n

Method 2 motivates the following theorem:

Theorem 3. Kab = C · ERab = 2m · ERab

For trees, this means that the commute time between two vertices is 2(n− 1) · ERab
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