
451: Splay Trees

G. Miller, K. Sutner

Carnegie Mellon University

2020/09/17

1 Binary Search Trees

2 Splay Trees

3 Analysis

4 ∗ Other Weights

Total Recall: BST 2

In this lecture, by a binary tree we mean a rooted, ordered, binary tree T :

rooted: there is a special root node.

ordered: the children of a node are ordered left to right.

binary: there are at most 2 children.

For a binary search tree (BST) we have additionally a node labeling λ : V → A
into some ordered set. For simplicity, assume all labels are distinct. As usual,
we may occasionally (often) conflate vertices and labels.

Critical Condition:

An in-order traversal of the tree produces an ordered sequence.

Keep It Shallow 3

We can search in a BST in time depth of the tree (length of the longest
branch).

Hence, if the tree has size n and is reasonably balanced, then we can search in
in O(logn) steps.

If, during a sequence of insertions, the tree becomes too unbalanced we need to
work on rebalancing it. So the challenge is to keep the additional cost of
rebalancing low.

If the tree is built at random it can be expected to the shallow:

Random Is Good 4

If the inserts are random, there is nothing to worry about.

5

1

○ 3

2 4

11

9

7

6 8

10

12

○ 14

13 15

○ 16

5, 11, 9, 12, 7, 8, 1, 3, 6, 14, 15, 13, 4, 2, 10, 16

Digression: Expected Depth 5

Theorem

The average depth of a binary search tree generated by inserting a permutation
of [n] is O(logn).

Proof.

Define a random variable for the total path length in a binary tree:

Xn =
∑
x∈T

depthT (x).

Here BST T was generated by inserting a random permutation of [n]. Write
en = E[Xn] for the expected total path length in T , so the expected path
length is en/n.

Let
pk = Pr[left subtree of root in T has size k]

for k = 0, . . . , n− 1 . Then pk = Pr[λ(root) = k + 1] = 1/n.

Hence

en =
∑
i<n

pi(n− 1 + ei + en−i−1)

= n− 1 + 1/n
∑
i<n

(ei + en−i−1)

= n− 1 + 2/n
∑
i<n

ei

and so

n en = n(n− 1) + 2
∑
i<n

ei

Subtracting this from the same equation for n+ 1 we obtain

en+1 =
2n

n+ 1
+
n+ 2

n+ 1
en

Picture 7

20 40 60 80 100 120

200

400

600

800

20 40 60 80 100 120

1

2

3

4

5

6

7

Looks good: total path length is about n logn and expected search length
looks like a logarithm.

Claim: The last recurrence has an upper bound en ≤ 2n lnn.

Proof. This can be shown by induction on n using an approximation for
ln(n+ 1). To this end, recall that the nth harmonic number can be
approximated as follows:

Hn = lnn+ γ +
1

2n
− 1

12n2
+ O(n−3).

where γ is Euler’s constant, γ ≈ .5772. It follows that

ln(n+ 1) ≈ lnn+
2n+ 1

2n(n+ 1)

where the error is O(n−3). This is enough to show that the bound works as
advertised.

2

A Surprise 9

An expert in solving recurrences could actually produce a closed form solution,
albeit in terms of the digamma function:

2
(
(n+ 1)γ − 2n+ (n+ 1)ψ(n+ 1)

)
A few values:

0, 1,
8

3
,

29

6
,

37

5
,

103

10
,

472

35
,

2369

140
,

2593

126
,

30791

1260

See polygamma for more information.

https://en.wikipedia.org/wiki/Polygamma_function

Forcing Balance 10

By contrast, some trees like AVL tree simply force the tree to be balanced. Of
course, the extra work does not come for free.

7

3

1

○ 2

5

4 6

11

9

8 10

13

12 15

14 16

Exercise

Review your old notes on BSTs and balanced BSTs.

Self-Adjusting Data Structures 11

Here is a vague idea that may help to speed up container data structures: if an
element x is accessed, move it to a place where it can be found more quickly,
next time there is a request.

If we assume that the probability for requests for x is high, this should reduce
overall costs.

First, a simple example: our data structure is a plain linked list of length n.
Assuming random access, average cost is n/2.

Here is an improvement: move-to-front lists (MTF): after an access to x, move
x to the front of the list.

Example 12

A list with 20 distinct elements, 200 access operations. Access probabilities
ranging from 0.01 to 0.1.

Comparison 13

What is the proper reference performance in a static data structure?

Assume we are given the sequence of access requests in advance. Then we can
compute access frequencies and sort the list accordingly. Call this optimal
static list K and let L a MTF list with the same elements.

The expected cost for a search in K is
∑

i i pi.

Example 1: For uniform probabilities this is (n+ 1)/2.

Example 2: But for pi = 2−i we get expected cost around 1.085.

Simplify 14

To simplify notation, we will assume that K = (1, 2, . . . , n). This is fine, we
can simply rename the elements in the lists as well as in the access sequence
(which clearly does not affect frequencies).

So L = (`1, `2, . . . , `n) is some permutation of [n] that changes during the
execution of the algorithm.

Exercise

Show that a list sorted by access frequencies is optimal as far as static lists are
concerned.

Exercise

Verify the two examples on the last slide.

Potential 15

Intuitively, we need a potential function that somehow measures the distance
between L and K. Alas, something simple-minded like Hamming distance
won’t work.

For all x ∈ [n] define

Φx = #(z > x | z before x in L)

Φ(L) =
∑
z∈[n]

Φz

This should look familiar: for Φx we are counting inversions in L with right
endpoint x, and Φ(L) is just the total number of inversions.

For example, Φ(K) = 0 but Φ(Kop) =
∑

i<n i = n(n− 1)/2.

Analysis 16

Now suppose x ∈ [n] is in position k in L.

Claim: Accessing x = `k causes ∆Φ = k − 1− 2 Φx.

To see this, note that the k − 1 elements to the left of x can be grouped into s
small and b big. So k − 1 = s+ b. But b = Φx, so ∆Φ = s− b = k − 1− 2Φx

and we have −k < ∆Φ < k.

For example

10 4 5 2 9 1 7 3 8 6→ 8 10 4 5 2 9 1 7 3 6 +4

2 5 8 9 1 3 4 6 7 10→ 1 2 5 8 9 3 4 6 7 10 −4

So? 17

Now consider an element x = `k in L. In the static list K, x is in position x
and thus requires x steps to access.

costΦ = cost + ∆Φ

= 2(k − Φx)− 1 < 2x

Now consider a long sequence of m operations from L0 to Lm, say,
m = Ω(n2+ε). Since the total difference in potential is bounded by n(n− 1)/2,
we have an amortized cost twice the cost in the optimal static list.

Exercise

What would happen if we simply transposed x with its left neighbor instead of
moving it all the way to the front?

1 Binary Search Trees

2 Splay Trees

3 Analysis

4 ∗ Other Weights

Splay Trees 19

A splay tree is a BST, where every search for a node x is followed by a
sequence of rotations that moves x to the root: we splay x. As a consequence,
the tree remains reasonably balanced, though not in as rigid a manner as with
other trees.

Alas, if this rotate-to-the-top operation is done blindly, the amortized cost
could still be linear in the size of the tree.

Exercise

Show how ill-chosen rotations could fail.

Rotations 20

y

x

A B

C

○ x

A y

B C

○

=⇒ right-rotate (about x y)

⇐= left-rotate (about y x)

Note that rotations preserve the BST property.

Zigs and Zags 21

Suppose some vanilla search has found x. If x already is the root there is
nothing to do.

If x is the left child of the root y, rotate about x y. This is called a zig.

y

x

A B

C

x

A y

B C

Zig-Zig 22

z

y

x

A B

C

○

x

A y

B z

C ○

So there are two rotations, first about y z, then about x y.

Zig-Zag 23

z

y

A x

B C

○

x

y

A B

z

C ○

Again two rotations, first about x y, then about x z.

Rewrite 24

Of course, there are symmetric versions: zag, zag-zag, and zag-zig.

Note that these rules really form a graph rewrite system: given a suitable graph
G (i.e., a binary tree), we can match the left hand side against some subgraph
H and then replace it by the right hand side H ′, producing globally a new
graph G′.

This is analogous to string rewriting: for example, context-free grammars such
as

S � ε | S(S)

are string r/w systems. Alas, the technical details are significantly more
complicated in the graph case, so we will rely on intuition rather than formal
definitions.

Digression: Wolfram Physics 25

Two Splays 26

6

5

4

3

2

1

0 ○

○

○

○

○

○

0

○ 5

3

1

○ 2

4

6

3

0

○ 1

○ 2

5

4 6

First we splay 0, then 3.

Splay 0 Steps 27

6

5

4

3

2

1

0 ○

○

○

○

○

○

6

5

4

3

0

○ 1

○ 2

○

○

○

○

6

5

0

○ 3

1

○ 2

4

○

○

0

○ 5

3

1

○ 2

4

6

Exercise

Do the same step by step transformation for the following splay on 3.

1 Binary Search Trees

2 Splay Trees

3 Analysis

4 ∗ Other Weights

Burning Question 29

Why should the splay rules produce amortized running time O(logn)? It is
entirely unclear that we could not wind up with lots of deep trees.

We will use a potential function to show that this actually cannot happen.
Unsurprisingly, the right function is far from obvious here. Remember the
Ansatz method?

We need to fix a bit of terminology: our BST will be T and we write Tx for the
subtree with root x. We attach a weight w(x) to each node and then use
weights to define the potential.

Weights and Potential 30

W (x) =
∑
z∈Tx

w(z) size of x

Φx = blogW (x)c rank of x

Φ(T) =
∑
z∈T

Φz potential of T

For us, w(x) = 1 so that W (x) = |Tx| and the rank of x is essentially the
logarithm thereof of the size of the tree.

However, on occasion it is better to use different weights, whence the general
definition.

The potential of T is always the sum of all ranks.

But Why? 31

For example, for a complete binary tree T of depth d on n = 2d − 1 nodes we
have

Φ(T) =
∑
i

i 2d−i = 2d+1 − d− 1

For a degenerate path “tree” on n = 2k − 1 nodes we have

Φ(T) =

k−1∑
i

i 2i = (k − 2)2k + 2

In general, the intent is that a balanced tree will have potential O(n), but a
very unbalanced tree will have potential O(n logn).

Examples 32

4

2

○ 1

0 0

3

2

1

0 0

0

2

○ 2

0 1

○ 0

3

3

3

3

2

2

2

2

1

1

0 ○

○

○

○

○

○

○

○

○

○

Potential 18 with 16 nodes on the left, potential 22 with 11 nodes on the right.

Exercise

Figure out what the potential of a degenerate one-branch tree is in general.
Try some other simple shapes.

Access Lemma 33

Suppose we have a splay tree T of size n with root r.

Lemma (Access Lemma)

When splaying node x, the amortized cost costΦ is bounded by 3(Φr −Φx) + 1.

Proof.

So tree T is transformed into tree T ′ and costΦ = cost + ∆Φ.

We need to consider the sequence of rotations involved with splaying x to the
root.

Alas, there are 3 (actually 6) possible cases: we have to determine ∆Φ for zig,
zig-zig and zig-zag.

Zig 34

y

x

A B

C

x

A y

B C

costΦ = 1 + ∆Φ

= 1 + Φ′x + Φ′r − Φx − Φr locality

≤ 1 + Φ′x − Φx Φr ≥ Φ′r

≤ 1 + 3(Φ′x − Φx) Φx ≤ Φ′x

Zig-Zig 35

z

y

x

A B

C

○

x

A y

B z

C ○

costΦ = 2 + ∆Φ

= 2 + Φ′x + Φ′y + Φ′z − Φx − Φy − Φz locality

= 2 + Φ′y + Φ′z − Φx − Φy Φz = Φ′x

≤ 2 + Φ′x + Φ′z − 2Φx Φ′x ≥ Φ′y,Φy ≥ Φx,

≤ (2Φ′x − Φx − Φ′z) + Φ′x + Φ′z − 2Φx see claim 1

= 3(Φ′x − Φx)

Zig-Zag 36

z

y

A x

B C

○

x

y

A B

z

C ○

costΦ = 2 + ∆Φ

= 2 + Φ′x + Φ′y + Φ′z − Φx − Φy − Φz locality

≤ 2 + Φ′y + Φ′z − 2Φx Φ′x = Φz,Φy ≥ Φx,

≤ (2Φ′x − Φ′y − Φ′z) + Φ′y + Φ′z − 2Φx see claim 2

= 2(Φ′x − Φx)

≤ 3(Φ′x − Φx)

Done 37

There may be many zig-zigs and zig-zags, but there is at most one zig
operation during the whole sequence of rations while splaying x.

So, from the case analysis, we can pick up at most one term 1, the rest is a
telescoping sum of ∆Φx terms.

costΦ(splay x) ≤ 3(Φr − Φx) + 1

= O(log |T |/|Tx|)

= O(logn)

2

Auxiliary Claims 38

Claim 1: 2 ≤ 2Φ′x − Φx − Φ′z

Claim 2: 2 ≤ 2Φ′x − Φ′y − Φ′x

Exercise

Verify these claims.

Balance 39

Corollary (Balance Theorem)

A sequence of m splay operations is O((n+m) logn).

Proof.

This is really a corollary to the Access Lemma:

∑
cost =

∑
costΦ + Φ(T0)− Φ(Tm)

= O(m logn+ n logn)

2

Insertions 40

Suppose we wish to insert x into T . Conduct a vanilla BST search to find a
node z with left/right subtrees A and B such that, say, A < x < z.

Splay z to the top and then construct the tree shown below.

z

A B

C

z

A' B'

x

A' z

○ B'

One can easily see that we get back a BST, but could this possibly wreck our
amortized analysis?

Analysis 41

By the Access Theorem we have amortized cost O(logn) for the vanilla search
and the following splay.

The following tree surgery is obviously O(1), but we need to be careful: the
ranks change.

The size of T ′z can only be smaller than the size of Tz, so the rank of z can
only decrease.

The new node x has size n+ 1 and rank blog(n+ 1)c, which is certainly
O(logn).

Other Operations 42

Delete

To delete node x, first splay it to the root, delete it, and join the two subtrees.

Join

Suppose we have two splay trees T1 and T2 and we wish to combine them
where all nodes in T1 are to the left of all nodes in T2. Find the right-most
element in T1 and splay it to the root; then adjoin T2 as right subtree.

Exercise

Convince yourself that these operations are amortized O(logn).

Comments 43

The version presented here is bottom-up splaying. There is an analogous
top-down version where the rotations start at the root.

More material can be found at Splay Trees, including C code and further
references. The code is surprisingly simple, given the major difficulties in the
performance analysis.

http://www.link.cs.cmu.edu/splay/

1 Binary Search Trees

2 Splay Trees

3 Analysis

4 ∗ Other Weights

Playing with Weights 45

We can prove other results by using different weights. Suppose item ai is
accessed mi ≥ 1 times, so m =

∑
mi.

Theorem

The total time for m operations is O(m+
∑
mi log(m/mi)).

Proof.

Change the weight to w(x) = mi/m so that W (T) = 1 and Φroot = 0.

Biggest potential change at x: x moves from root to leaf.

∆Φx = − logmi/m = logm/mi

So the biggest total potential change in the whole tree is

∆Φ =
∑

logm/mi

Proof Continued 46

The cost for accessing x is

3(Φr − Φx) + 1 = −3Φx + 1 = −3 logW (Tx) + 1

= 3 log

(
m∑

z∈Tx
mz

)
+ 1

≤ 3 log
m

mx
+ 1

Hence, the total cost for all operations is∑
costΦ + ∆Φ ≤

∑
mi

(
3 log

m

mi
+ 1

)
+
∑

logm/mi

= O

(∑
mx log

m

mx
+m

)
2

	Binary Search Trees
	Splay Trees
	Analysis
	 Other Weights

