
451: Suffix Arrays

G. Miller, K. Sutner

Carnegie Mellon University

2020/11/24

1 Suffix Arrays

2 Applications

Recall: Suffix Trees/Automata 2

Suppose W is a string of length n. We can store the suffixes of W in two
structures:

Suffix Tree Path compacted, deterministic trie of size O(n). Can be
constructed in linear time.

Suffix Automaton Minimal PDFA for suff(W) of size O(n). Can be
constructed in linear time.

Both structures are essentially finite state machines, so we implicitly also store
all the factors.

Linear is asymptotically optimal, but there is still room to improve the
constants, and perhaps the difficulty of the algorithms.

Suffix Arrays 3

Here is a computationally attractive alternative to suffix trees: so-called suffix
arrays.

To construct a suffix array for W ,

sort all the suffixes of W , and

return a list of the corresponding indices in [n].

The result is the suffix array SA(W) of W . Technically, SA : [n]→ [n] but we
will sometimes conflate the index SA(i) and the actual suffix w[SA(i):].

The brute-force approach to computing the suffix array is quadratic since the
total length of all suffixes is quadratic.

Longest Common Prefix 4

As it turns out, it is convenient to augment a suffix array with another array:
the longest common prefix (LCP) array.

LCP(i) = max
(
|z| | z ∈ pref(SA(i)) ∩ pref(SA(i+1))

)

In other words, if u and v are the two consecutive suffixes in lexicographic
order, we need to compute the position k such that u[1:k] = v[1:k] whereas
uk+1 6= vk+1.

Having longest common prefixes between successive suffixes sometimes comes
in handy (in conjunction with the actual suffix array). Introduced by Manber in
1993 (used in glimpse).

Example 5

For the Fibonacci word F6 = abaababa we have

i w[j:] j = SA(i)

1 a 8
2 aababa 3
3 aba 6
4 abaababa 1
5 ababa 4
6 ba 7
7 baababa 2
8 baba 5

So the suffix array and LCP arrays are

i 1 2 3 4 5 6 7 8
SA 8 3 6 1 4 7 2 5
LCP 1 1 3 3 0 2 2 −

Iterated Partial Sorting 6

Idea: Instead of sorting the suffixes completely, just sort according to the first
two letters: x � y if x1x2 ≤ y1y2.

To avoid a special case with the one-letter suffix w[n:], we use an endmarker #
considered to be less than all a ∈ Σ.

Now suppose we repeat: in round 2, the super-letters represent strings in Σ4
#.

After k rounds, the super-letters represent strings in Σ2k

, so we need at most
logn rounds until the super-letters correspond to the whole suffix (there is no
problem with length because we pad with endmarkers).

But then we have sorted the suffixes, period. We can easily extract the suffix
array.

Sliding Windows 7

For simplicity we will only use digit alphabets

Dd = {0, 1, . . . , d−1}

Sliding a window of width 2 across a word w produces a sequence of
“super-letters” in the alphabet D ×D. This is called a sliding block code in
symbolic dynamics.

For example, F6 = 01001010 turns into 01, 10, 00, 01, 10, 01, 10 which we could
renumber as 1 2 0 1 2 1 2, a string over D4.

This renumbering is naturally order preserving, as far as sorting is concerned
nothing changes.

The length of the code word is |w| − 1, The number of super-letters appearing
in it is at most

min(|w| − 1, |Σ|2)

Word Lists 8

To add an endmarker to a digit alphabet we use 1, think of this as −1 for
comparisons. If x ∈ Dn we adopt the convention that xi = 1 for i > n.

We will use fixed length word lists of the form

X = (x1, x2, . . . , xn)

where xi ∈ D1,2 (but the underlying alphabet will change). A word x of length
n is considered to be the list X of its letters.

Here are the critical operations on these lists. Let δ = 2k.

pairing produce the list

X ′ = (x1x1+δ, x2x2+δ, . . . , xnxn+δ)

recode Sort the last list, then scan left to right and associate the
two-letter words with 0, 1, . . . , ` (where ` ≤ n−1, incrementing
whenever a new word appears. Then replace the words in X ′

accordingly.

Algorithm 9

Initialize with the character list X of w, k = 0.

Round k

δ = 2k

X = recode(pairingδ(X))

k++

Keep going until the words (ultimately: letters) in X are all distinct. Then read
the suffix array off the positions in X: first form pairs with [n], sort and project
away the first component.

Claim: Worst case running time is O(n logn) (but fewer rounds may suffice).

Example F6 = 01001010 10

There are 3 rounds.

1 2 3 4 5 6 7 8

0 0 1 0 0 1 0 1 0
1 2 3 1 2 3 2 3 0
2 3 6 1 4 7 2 5 0

Form pairs with the last list and [8] and sort:

0:8, 1:3, 2:6, 3:1, 4:4, 5:7, 6:2, 7:5

Projecting away the first component produces the suffix array

8, 3, 6, 1, 4, 7, 2, 5

The first round unfolds like this

01, 10, 00, 01, 10, 01, 10, 01

01, 00, 01, 01, 01, 10, 10, 10

01 7→ 0, 00 7→ 1, 01 7→ 2, 10 7→ 3

Another Example 11

A random word over a three-letter alphabet of length 10:

0 3 1 1 1 1 3 2 2 3 3
1 5 0 0 0 1 6 2 3 7 4
2 7 0 1 2 3 8 4 5 9 6

Suffix array: 2, 3, 4, 5, 7, 8, 10, 1, 6, 9 and corresponding suffixes:

2 1 1 1 1 3 2 2 3 3
3 1 1 1 3 2 2 3 3
4 1 1 3 2 2 3 3
5 1 3 2 2 3 3
7 2 2 3 3
8 2 3 3

10 3
1 3 1 1 1 1 3 2 2 3 3
6 3 2 2 3 3
9 3 3

And LCP? 12

The brute-force approach to computing LCP given SA is quadratic: just
compute the longest prefix of all adjacent pairs(

SA(i), SA(i+1)
)

i = 1, . . . , n−1

Wild Idea: How about changing the order in which we compute the prefixes of
adjacent strings?

OK, but what order should we pick? Note that SA is a permutation of [n], so
there is an inverse permutation SA−1. Define a weird successor function
σ(i) = SA−1(i) + 1. So we could also do(

i,SA(σ(i))
)

i = 1, . . . , n ∗

where the ∗ indicates that we should skip over i0 = SA(n).

Why on earth should this help?

Kasai’s Algorithm 13

Proposition

If k = LCP
(
i, σ(i)

)
, then LCP

(
i+ 1, σ(i+ 1)

)
≥ k − 1.

Proof.

Write u1, u2, . . . , un for the non-empty suffixes of w.

Suppose the algorithm moves from (i, j) to (i′, j′) where i = i+ 1, and ui, uj
share a longest prefix of length k. Wlog k ≥ 2. Then

ui = aui+1 uj = auj+1 ui+1 < uj+1

If j′ = j + 1 we are done. Otherwise we must have

ui+1 < uj′ < uj+1

But then k can drop at most by 1.

2

Analysis 14

We can exploit the proposition by starting the next prefix search at position
k − 1, rather than 1 in the brute-force approach.

What is the effect on the running time?

Think of k = 1 initially, after a phantom round 0.

In each real round, we first decrease k once, and then possibly increase it some
number of times. The total decrease is n− 1. Since k < n always, the total
increase can be at most 2n. So the algorithm is linear.

Example 15

Again for F6 = 01001010 we have

i 1 2 3 4 5 6 7 8
SA(i) 8 3 6 1 4 7 2 5
SA−1(i) 4 7 2 5 8 3 6 1

which produces the following LCP order:

i j ui uj LCP

1 4 0 1 0 0 1 0 1 0 0 1 0 1 0 3
2 5 1 0 0 1 0 1 0 1 0 1 0 2
3 6 0 0 1 0 1 0 0 1 0 1
4 7 0 1 0 1 0 1 0 0
6 1 0 1 0 0 1 0 0 1 0 1 0 3
7 2 1 0 1 0 0 1 0 1 0 2
8 3 0 0 0 1 0 1 0 1

Rolling Hash 16

An alternative approach is to use a rolling hash (as in Rabin-Karp) to find the
suffix array in (expected) time O(n log2 n).

The idea is to preprocess the string w, so that a lexicographic comparison of
two suffixes can be handled in O(logn) steps: given two suffixes u and v, we
compute the longest common prefix: use binary search to find the least index k
such that u[:k−1] = v[:k−1] whereas uk 6= vk.

Exercise

Figure out the details of this algorithm.

Sanity Check 17

Question: Can we convert between suffix trees/automata/arrays? In linear
time?

This is not meant as a practical algorithm (the direct methods are faster), but
a question about the logical connections.

Arrays and Trees

Converting the tree to the array is fairly easy: just do a traversal in
lexicographic order, essentially just DFS. This also builds the LCP array.

For the opposite direction, exploit the fact that we can insert the prefixes in
lexicographic order: suppose u and v are two consecutive suffixes and that u
has just been inserted. Think about pushing pointers to the nodes on the path
corresponding to u on a stack.

Use the LCP array to pop the stack to get back to the fork between u and v.
Then vanilla insert the tail of v.

And the Suffix Automaton? 18

Essentially the same argument applies to converting the suffix automaton to
the tree: ignoring compaction, the tree is just the unfolding of the acyclic
automaton. We can run a lexicographic “DFS” in the automaton, just as in the
tree. Quotation marks since this version of DFS stops at the terminal node, not
when a vertex is already reached.

The same method also produces the suffix and LCP array.

Getting the suffix automaton runs into problems: we could interpret the suffix
tree as an automaton and use the fact that an acyclic automaton can be
minimized in linear time, but the edge labels are in Σ?, not in Σ. Alas, in
general we cannot unfold these edges in linear time. Just think about anbn#.

Sharing isomorphic substructures seems inherently harder.

1 Suffix Arrays

2 Applications

Text Search 20

As always, assume we have a (long) text T of length n. Here are some
standard questions regarding a potential substring w of length m.

Determine whether w appears in T (is a factor).

Find the first position of w in T .

Find all the positions of w in T .

Count the number of occurrences of w in T .

Suppose we have the suffix tree T for T , which can be constructed in time
linear in |T |. For long T , this is attractive mostly when we have to deal with
multiple queries.

Proposition

We can determine the longest prefix of w that appears in T in time linear in m.

Counting 21

The number of occurrences of w in T is the number of leaves below the node ν
in T reached via w.

To find all positions, assume that the final nodes are labeled by the starting
position of the corresponding suffix. Again we can traverse the subtree of ν.

This can be handled in O(n+m) steps.

Note: This is no better than KMP, but there is a major difference:

preprocessing in KMP is O(m), check O(n),

preprocessing for suffix tree is O(n), check is O(m).

Use accordingly.

Longest Common Factor 22

Aka longest common substring (do not confuse with longest common
subsequence).

Problem: Find a longest word in fact(T1) ∩ fact(T2).

Think about this for a bit. It’s a simple enough question, but it is not so clear
how one would go about finding an efficient algorithm.

With suffix trees, this can be handled in linear time: let #1 and #2 be two
endmarkers. Let W = T1#1T2#2 and build the tree for W .

Clearly, the suffixes of W come in two kinds: containing #1 (and a suffix of
T1) or not (just a suffix of T2). We can label the leaves accordingly, and
propagate the labels up to the internal nodes. Then find the deepest node that
has both kinds in the subtree below.

The post-processing is linear time, just like the construction of the suffix tree.

Long Common Factors 23

Suppose we have a collection of m strings T1, T2, . . . , Tm of total size n.

Problem: We would like to find a long string in common to many of the Ti.

Somewhat more precisely, for k > 1, define

`(k) = max
(
|z| | ∃ I ⊆ [m] (|I| ≥ k, z ∈ fact(Ti) for i ∈ I)

)
`(1) is pointless, `(2) we just handled.

In general, once we have `(2), `(3), . . . , `(m) we can try to make sense out of
the informal question.

Amazingly, there is a linear time algorithm for this, but we will make do with
O(mn).

Counting Distinct Leaves 24

First, build a (generalized) suffix tree T for the sequence

T1#1, T2#2, . . . , Tm#m

Note that all the endmarkers are distinct.

It should be intuitively clear what we mean by a generalized suffix tree. Here is
a horrible way of building it: construct the tree for the long word

T1#1T2#2 . . . Tm#m

Then delete all the subtrees below the first # on any branch starting at the
root.

For any internal node ν of the tree, define

C(ν) = number of distinct endmarkers in the subtree of ν

C to ` 25

The number of leaves below a node is easy to compute in linear time, but we
are counting distinct leaves; this will take us O(mn) steps. We compute the
set of endmarkers below each node.

Assume we have the C counts as well as the string-depth of all nodes in T.
String-depth sd(ν): count the number of letters on a path to ν (recall that T is
compacted, so this is not the same as path length).

Traverse the tree to find

Dk = max
(

sd(ν) | C(ν) = k
)

Postprocess by setting Dk = maxDk, . . . , Dm and we have `.

Total running time is O(mn).

Plain Search in Suffix Arrays 26

Suppose we have the suffix array A for some text T of length n.

Question: How do we actually search for a factor w of length m?

We conduct a binary search: essentially, we maintain and shrink a range [lo, hi]
of possible positions for w in A.

Initially, lo = 1 and hi = n.

Let ` be the midpoint between lo and hi and compare w to A(m), then update
lo or hi accordingly (get out if w has been found).

Total cost is O(m logn).

There are methods linear in m, but they are more complicated.

Positions in the Suffix Automaton 27

Suppose we have the suffix automaton A(w) and x ∈ fact(w). By “position of
x in w” we always mean the position of the first letter of x. Let x(1) denote
the first occurrence of x in w. Define “first position” and “longest right
context” functions as follows:

fposw(x) = first position of x(1)

lcntw(x) = max
(
|z| | z ∈ Rw(x)

)
Clearly (fposw(x) + |x| − 1) + lcntw(x) = n.

Let qlst be the last state in A(w). Confusing states with inputs as usual, to
compute lcntw(x), exploit lcntw(qlst) = 0 and

lcntw(p) = 1 + max
(

lcntw(q) | q = δ(p, a)), a ∈ Σ
)

This can be handled with DFS in A(w).

So with O(n) preprocessing we can find the first position of x in time O(|x|).

Counting in the Suffix Automaton 28

Can we use the suffix automaton A(w) to count the number of occurrences of
x ∈ fact(w)?

This time we need to determine the cardinality of the right context of x: the
number of suffixes z such that xz is a suffix. This is similar to the last
question, but now we need not just the longest context.

Let F be the final states of A(w), and, for any state p, define

cnt(p) = |{ z ∈ Σ? | δ(p, z) ∈ F }|

If we can compute cnt(p) the answer is cnt(δ(qini, x)).

Traversal 29

For the computation we use

cnt(p) =

1 +
∑

(cnt(q) | q = δ(p, a), a ∈ Σ) if p ∈ F ,∑
(cnt(q) | q = δ(p, a), a ∈ Σ) otherwise.

Again, this can be handled in a precomputation with DFS in A(w) in time
O(n).

After the precomputation, we can count the number of occurrences of x in
time O(|x|).

	Suffix Arrays
	Applications

