
451: Suffix Trees

G. Miller, K. Sutner

Carnegie Mellon University

2020/11/19

1 Suffix Tries

2 Suffix Trees

Stringology 2

According to the Prague Stringology Club:

. . . a science on algorithms on strings and sequences. It solves such
problems like exact and approximate pattern matching, searching for
repetitions in various texts, etc. There are many areas that utilize
the results of the stringology (information retrieval, computer vision,
computational biology, DNA processing, etc.).

http://www.stringology.org/

www.stringology.org

Factors 3

We are interested in storing all the factors of a given word w. This is obviously
useful in a text search; we’ll see other applications next time. We will consider
a number of approaches:

suffix tries

suffix trees

suffix automata

suffix arrays

The algorithms tend to be a bit messy and combinatorial in nature, in
particular the linear time ones.

Recall: Factors 4

Given a factorization
w = x y z

of a word w ∈ Σ?, x/y/z is a prefix/factor (infix)/suffix of w, respectively.

We write
w[i:j] = wiwi+1 . . . wj

for the factor from position i to j, 1 ≤ i ≤ j ≤ n. w[i:] stands for the suffix
w[i:n], and w[:i] for the prefix w[1:i],

We write
pref(w) fact(w) suff(w)

for the finite languages of all prefixes/factors/suffixes of w ∈ Σ?. For n = |w|
we have |pref(w)| = |suff(w)| = n+ 1, but |fact(w)| can be quadratic.

Recall: Sorting Strings 5

Suppose we have list of strings W = (w1, w2, . . . , wm) over an alphabet Σ.
The size of W is

sz(W) = n+
∑
i

|wi|

As usual, sorting requires Ω(n logn) comparisons which are O(max|wi|). In
particular sorting suff(w) is Θ(n2 logn).

By comparing single letters, we can sort in O(s) steps where s is the size of the
input:

Insert the words into a trie, then do a pre-order traversal.

Use radix sort with MSD first.

So we can sort the suffixes of a word of length n in quadratic time.

Warning: This is fine for the standard case of fixed, small size alphabets, but
in general we pick up another factor log|Σ| (uniform versus logarithmic model).

Recall: Tries 6

Fix some finite alphabet Σ (of non-astronomical size so we may assume a letter
is size 1).

A trie1 T over Σ is a rooted, edge-labeled tree. The edge labels are letters in
Σ, for each node there is at most one out-edge labeled a ∈ Σ. Write
lab : E → Σ for the edge labels.

Any path π = e1, e2, . . . , ek in the trie corresponds to a word over Σ?:

lab(π) = lab(e1)lab(e2) . . . lab(ek)

We are interested in paths starting at the root, and ending at a terminal
(essential) node. The collection of associated words is a finite language, in
symbols L(T).

1Should be pronounced like “tree” for retrieval. To preserve student sanity I will say “try.”
Apologies to Ed Fredkin.

Factor Tries 7

Challenge: We want to build a trie T(w) that stores all factors of a word w.

Clearly this will be useful for text search, but there is actually an amazing
number of applications, more later.

Given some sort of finite-state-machine type of approach and the observation
fact(w) = pref(suff(w)) it suffices to just store all suffixes.

The brute-force approach is to use a standard trie and simply insert all the
suffixes w[i:], using a vanilla insert operation.

Let’s say we insert in order w = w[1:], w[2:], . . . , w[n:].

Vanilla Trie 8

defun VanillaSuffixTrie(w : Σ?)

initialize trie

forall i = 1, . . . , |w| do
vanilla-insert w[i:] start at root each time

od

Lemma

Brute-force construction of T(w) is Θ(|w|2).

This is quadratic even when w = an.

Terminology 9

There are two somewhat orthogonal ways to discuss the objects in this lecture:

Data Structures Just think of building yet another useful data structure that
has many applications in string processing.

Automata Theory Instead recognize these data structures as thinly disguised
finite state machines, and import all the standard machinery
from there.

In the first setting, special nodes in a factor trie that correspond to suffixes are
called essential. In the second, they are terminal states. Similarly one talks
about the root versus the initial state, and so on.

These may seem utterly irrelevant, but having a good conceptual framework is
very important.

Example: Fibonacci Word 10

Fibonacci words are defined by

F1 = b F2 = a Fn = Fn−1 Fn−2

These have lots of interesting properties and provide useful testcases. A
turtle-generated fractal based on F20

Fibonacci Trie 11

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

word F6 = abaababa

edge colors: a red, b blue

essential nodes are
square/green

node labels indicate insertion
order

Example: Quadratic Trie 12

word anbn for n = 5

edge colors: a red, b blue

essential nodes are
square/green

Grumpy complaint: why can’t I tell the rendering algorithm to place the red
edges on the leftmost branch?

Endmarkers 13

Claim: There will be essential internal nodes iff some proper prefix of a suffix
(aka factor) is also a suffix.

To push all the essential nodes to the leaves one can attach an endmarker, a
symbol that appears nowhere else in the given word.

w1w2 . . . wn#

Note that some authors adopt a slightly dangerous convention: since it is
boring to write the dang # over and over again, they simply omit it. It’s just a
phantom. We will not do this.

Example: Quadratic Trie 14

this time with endmarker:
anbn#

All the essential nodes are now
leaves.

back

Forks, Heads and Tails 15

If the word W has two suffixes of the form zau and zbv, the state associated
with z has outdegree at least two: a fork. In this case we call the strings z a
head, and au/bv a tail.

z

a

b

u

v

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

For F6 we have 3 forks:
a, aba, ba.

Convention 16

If we think of a trie as a finite state machine, it is entirely natural to conflate
input x ∈ Σ? with the actual state δ(qini, x) where δ is the transition function.
Since we are dealing with deterministic machines, there is no problem with this.

Of course, in a real implementation, a state would be a uint or some such.

Unless you care deeply about types (and your own sanity).

Suffix Links 17

For long words, quadratic time is obviously a problem, in particular when the
number of factors is sub-quadratic.

Here is a first step towards better algorithms: we would like to make the
running time of the construction depend on the size of the resulting trie.

Suppose we have a fork/head az with tails u and v. Note that z must be
another fork (with shorter head and same tails). How about computing a link
(a pointer) from az to z, in the hope of speeding up the trie construction. This
called the suffix link function, sl(az) = z.

As a word function, this is trivial, but we want to compute it cheaply for all
forks in the trie. Actually, the real algorithm constructs a few more links (fork
plus parent, final nodes of outdegree 1).

Insertion Order 18

Say we have a head az and tails u and v, |u| < |v|. Recall that we insert
longest-first.

Proposition

We have the following insertion order

azv ≺ zv � azu ≺ zu

Proof. It is clear that azv is first, and zu is last.

Suppose azu ≺ zv. Then |azu| > |zv|, so that |v| = |u|+ 1. Both are suffixes,
so v = bu.

Similarly, zv = zbu = azu and it follows that a = b, z ∈ a?. So zv = azu.

2

Code Preview 19

The inner loop of the auxiliary function makeLinks follows/builds a chain of

suffix links until the initial state is reached, or a transition p1
wk−→ q1 is found

that already has links defined for both endpoints.

p sl(p) sl2(p)

q sl(q) sl2(q)

a a a

The main function SuffixTrie exploits these links to speed up the insertion
process for the suffixes (as opposed to just using vanilla insert at the bottom of
the code).

Code 20

defun SuffixTrie(w : Σ?)

sl(qini) = qini
(r , k) = (qini, 1)

forall i = 1, . . . , n do
k = max(i, k)
(r , k) = makeLinks(sl(r), k)

vanilla-insert w[k:] at r
od

defun makeLinks(p : Q, k : N)

while k ≤ n and δ(p, wk) ↓ do
q = δ(p, wk)
(p1, q1) = (p, q)
while p1 6= qini and sl(q1) ↑ do

sl(q1) = δ(sl(p1), wk)
(p1, q1) = (sl(p1), sl(q1))

od
if sl(q1) ↑ then sl(q1) = qini
(p, k) = (q, k+1)

od
return (p, k)

Example F6 = abaababa 21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Consider head aba, tails ababa and ba.

Log 22

i r k links r, k change inserts

1 1 1 (1, 1)→ (1, 1) 1
a→ 2, 1

2 1 2 (1, 2)→ (1, 2) 1
b→ 10, 2

3 1 3 2:1 (1, 3)→ (2, 4) 2
a→ 17, 4

4 2 4 3:10, 10:1, 4:11, 11:2 (1, 4)→ (4, 7) 4
b→ 22, 7

5 4 7 (11, 7)→ (11, 7) 11
b→ 24, 7

6 11 7 (2, 7)→ (4, 9)

7 4 9 (11, 9)→ (11, 9)

8 11 9 (2, 9)→ (2, 9)

Example abcabcabc 23

If one allows internal terminals, links also have to handle terminal nodes with
outdegree 1.

Analysis 24

Lemma

The suffix link algorithm constructs T(w) in O(s) steps where s is the number
of nodes in T(w) (output-optimal).

Proof.

The overhead in the main loop of SuffixTrie is O(n) over the whole execution
of the algorithm.

Calls to makeLinks are also O(s) overall: count the number of suffix links
created.

The nested loop of SuffixTrie is also O(s) overall, since new states are created
there.

2

1 Suffix Tries

2 Suffix Trees

Saving Space 26

Suffix tries can be quadratic in size, so one would like to find more compact
representations. There are two main approaches:

Label Compaction Allow edges to be labeled by words rather than just letters.

Subtree Sharing Collapse nodes with identical subtrees (including labels).

The first method is all tree surgery. The second corresponds to minimization in
finite state machines.

One nice feature of these methods: both can be applied together, in either
order.

Word Labels 27

In a standard trie, edges are labeled by letters. It is entirely natural to use word
labels instead, lab : E → Σ+ . If q has indegree/outdegree 1, then contract

p
x−→ q

y−→ r p
xy−→ r

Call the trie deterministic if there is no node with two distinct out-edges e and
e′ such that lab(e) = au and lab(e′) = av, a ∈ Σ, u, v ∈ Σ?.

In a deterministic trie, we can still search for a path in essentially the same
manner as in plain tries.

If all edge labels are factors of a fixed word, word edge labels can easily be
implemented as a pair of pointers using constant space.

Exercise

Figure out how to implement label compaction. How does insertion and
deletion work in this setting?

Suffix Trees 28

Definition

The suffix tree S(w) for a word w of length n is a compacted, deterministic
trie with n leaves corresponding to the suffixes.

There is a more general definition that allows for internal essential nodes, but
we will use the restricted form: we can use our endmarker trick to make sure a
suffix tree always exists.

Note that all internal nodes must have outdegree at least two, so there are at
most n− 1 of them.

We can easily build a suffix tree in quadratic time: first build a trie, then do
compaction. expl

Innocent Question: Can we do this in linear time?

Suffix Automaton 29

First, let us consider a closely related problem: since fact(w) is finite and hence
regular, there must be a minimal DFA recognizing the factors of w. We will
drop the sink (partial DFA).

Question: Can we build the minimal PDFA for fact(w) in linear time?

The minimal PDFA for suff(w) is called the suffix automaton for w, written
A(w).

DAWGs 30

Finite state machines without loops are also called DAWGs: directed acyclic
word graphs.

So What? 31

We can unfold any acyclic PDFA into a trie. If the PDFA was minimal, sharing
subtrees takes us back to the machine.

Two descriptions for {aabb, abab, abba, baab, baba, bbaa}.

Recall: Myhill-Nerode Congruence 32

The right context (or left quotient) of a word x wrto the language suff(w) is

Rw(x) = { z ∈ Σ? | xz ∈ suff(w) }

This produces a right congruence on Σ?: x ≡w y if Rw(x) = Rw(y): an
equivalence relation of finite index such that

x ≡w y implies ∀u (xu ≡w yu)

It is well-known that the minimal DFA for any regular language has size the
number of right contexts of that language: we can think of the right contexts
as the states of an (abstract) automaton.

For some regular languages, this leads directly to an efficient algorithm to
construct the minimal PDFA for the language.

Example: F6 = abaababa 33

Clearly Rw(x) 6= ∅ iff x is a factor of w. Ignore
non-factors.

Minimal suffix automaton for F6, let L =
{abaababa, baababa, aababa, ababa, baba, aba, ba, a, ε}

1 L
2 {baababa, ababa, baba, ba, ε}
3 {aababa, aba, a}
4 {baba}
5 {ababa, ba, ε}
6 {aba}
7 {a}
8 {ba}
9 {ε}

a

b

b

a a

b

a

b

a

a

b

Congruence 34

L = {abaababa, baababa, aababa, ababa, baba, aba, ba, a, ε}

Rw(x) ≡w classes
L {ε}
{baababa, ababa, baba, ba, ε} {a}
{aababa, aba, a} {ab, b}
{ababa, ba, ε} {aba, ba}
{baba} {abaa, baa, aa}
{aba} {abaab, baab, aab}
{ba} {abaaba, baaba, aaba}
{a} {abaabab, baabab, aabab, abab, bab}
{ε} {abaababa, baababa, aababa, ababa, baba}

This explains the minimal PDFA on slide 33.

Proof Sketch 35

The following claims are easy to establish using pictures like the one below.

Claim 1: Let |u| ≤ |v|. Then either

Rw(u) ∩Rw(v) = ∅ or

Rw(v) ⊆ Rw(u) and u is a suffix of v = zu.

z u u z u
w =

Clearly ≡wa is a refinement of ≡w. Here is a more detailed description:

Claim 2:

Rwa(z) =

{
Rw(z) a ∪ {ε} if z is a suffix of wa,

Rw(z) a otherwise.

Splitting Classes 36

Lemma

Let z be the longest suffix of wa that appears on w and let z′ be the longest
factor of w for which z′ ≡w z. Then for all factors u and v of w: if u ≡w z then

u ≡wa

{
z if |u| ≤ |z|,
z′ otherwise.

Otherwise u ≡w v ⇐⇒ u ≡wa v.

Note that z and z′ depend only on wa, not the individual congruence classes.

Also, z = z′ implies that the equivalence classes of ≡w and ≡wa are the same.
This happens in particular when a does not appear in w (so z = ε).

Example 37

For W = an the congruence classes are just suff(W). Increasing n adds 1
class.

For W = anbm, 0 < n,m, the congruence classes are

{ai} i = 0, . . . , n
{ aibj | i ∈ [n] } j = 1, . . . ,m
{bj} j = 1, . . . ,m− 1

Hence there are n+ 2m classes. Increasing m adds 2 classes.

Exercise

What happens with anbna?
How about the number of classes of a Fibonacci word?

Suffix Automata Theorem 38

The state/transition complexity of an automaton A is the number of
states/transitions; written sc(A) and tc(A).

Theorem

Let n = |w| ≥ 2. The suffix automaton for w has sc(A) ≤ 2n− 1 and
tc(A) ≤ 3n− 3.
Moreover, it can be constructed in linear time and space.

Sketch of proof.

For n = 1 a 2-state machine clearly works. Essentially by the last lemma,
moving from w to wa will increase the number of states by at most 2, done by
induction.

One can show that the transition complexity is at most sc(A) + n− 2.

For the actual construction, one uses an idea similar to the suffix links from
above.

2

Ukkonen 39

The first linear time algorithm dates back to Weiner 1973, but a less
convoluted method is

Theorem (Ukkonen 1996)

A suffix tree can be constructed in linear time.

The idea is to first construct an implicit suffix tree: remove all the # labeled
edges, then perform compaction if necessary. ISTs are built inductively for all
prefixes of W . In the end the IST for W is converted into a real suffix tree.

ISTs sound like a bold step in the wrong direction: the IST for W has fewer
leaves than the suffix tree for W# iff some suffix is a prefix of another—the
endmarker was introduced exactly to avoid this.

But in the end everything works fine.

Details 40

Alas, the details are too messy for us. If you are interested, take a look at

M. Lothaire
Applied Combinatorics on Words
Cambridge University Press, 2005

D. Gusfield
Algorithms on Strings, Trees, and Sequences
Cambridge University Press, 1997

	Suffix Tries
	Suffix Trees

