| MONTH | Week | Sunday | Monday | Tuesday | Wednesday | Thursday | Friday | |-----------|------|--------|--------------------------------|--|--------------------------|--|--| | | | | 28 | Lecture (DA): Introduction and | | Lecture (DA): Concrete models | Recitation: Recurrences and | | AUGUST | 1 | | | Linear-time Selection | | and tight upper/lower bounds | lower bounds | | | | | 4 | Lecture (DA): Hashing I: | | Homework 1 out Lecture (DS): Hashing II: | Recitation: Hashing and | | ER | 2 | | LABOR DAY | Universal and Perfect Hashing | | Polynomial Hash Functions, aka
Fingerprinting | Fingerprinting | | | | | | | Homework 1 due | Homework 2 out | | | | 3 | | 11 | Lecture (DS): Amortized Analysis | | Lecture (DS): More Amortized
Analysis, Union Find | Recitation: Amortized analysis and Union Find | | AB | | | | | Homework 2 due | Homework 3 out | | | SEPTEMBER | 4 | | 18 | Lecture (DA): Range queries and
SegTrees | | Lecture (DS): Splay Trees | Recitation: Splay Trees and
SegTrees | | | | | | | | Homework 3 orals | | | | 5 | | 25 | Lecture (DA): Dynamic
Programming I | | Lecture (DA): Dynamic
Programming II | Recitation: Dynamic programming | | | | | | MIDTERM ONE | | Homework 4 out | | | | | | | Dor | niel Anderson away at Cp | | | | OCTOBER | 6 | | 2 | Lecture (DS): Graph search and
Depth-first search | nel Anderson away at op | Lecture (DS): Network Flows I:
Flows and Matchings | Recitation: Graph search and
Network Flow | | | | | | | Homework 4 due | Homework 5 out | i | | | 7 | | 9 | Lecture (DA): Network Flows II:
Advanced Flow Algorithms | Homework 4 due | Lecture (DA): Network Flows III:
Minimum cost flows | Recitation: Advanced Network
Flow and Minumum-cost Flows | | | | | | | Homework 5 due | | | | | | | FALL BREAK | | | | | | | 8 | | 23 | Lecture (DS): Game Theory | | Lecture (DA): Linear
Programming I: Fundamentals | Recitation: Game Theory and Linear Programming | | | | | Homework 6 out | | | | | | NOVEMBER | 9 | | 30 | Lecture (DA): Linear
Programming II: Duality | | Lecture (DS): Linear
Programming III: Polytopes,
Simplex, and Integrality | Recitation: More Linear
Programming: Polytopes and
Duality | | | | | | | | Homework 6 orals | | | | 10 | | 6 | DEMOCRACY DAY | | Lecture (DS): Approximation
Algorithms | Recitation: Approximation algorithms | | | | | | | | MIDTERM 2 | | | | 11 | | 13 Homework 7 out | Lecture (DS): Online Algorithms | | Lecture (DA): Computational
Geometry I: Geometric Primitives
and Convex Hull | Recitation: Online algorithms & geometry primitives, convex hull | | | 12 | | 20 | Lecture (DA): Computational
Geometry II Incremental
Algorithms | | THANKGIVING BREAK | | | | | | | Homework 7 due | | | | | | 13 | | 27 | Lecture (DS): Computational
Geometry III Sweep Algorithms | | Lecture (DS): Convolutions and their Applications | Recitation: More geometry & convolutions | | | | | Homework 8 out | | | | | | DECEMBER | 14 | | 4 | Lecture (DS): The Algorithmic
Magic of Polynomials | | Lecture (DA): Fast Fourier
Transform Algorithm | Recitation: FFT & Polynomials | | | | | | | | Homework 8 orals | | | | 15 | | EXAM WEEK. Final exam date TBD | | | | | | | | | | | | | |