Subsampling

Uniformly sample

X1 Xy X3 [Xs [X5 [Xg [X7 [X i
1 X2 | X5 X4 X5 |Xg |X7 |Xg the coordinates

1 as nested subsets

= -} -} Deee D
Xq Xs Xg Xg [n] So=251 25,2 = Slogz n

1 Include each item from S;_; in S;
independently with probability 1/2

X1 X6

4/25/2018

Xg, Is x restricted to coordinates in S;

Subsampling in a Stream

Processing
Algorithm 0 Xs, = X
Stream update e; < e; + 4 < i
Algorithm 1 Xs,
Ifi €Sy,i €S;buti€s,,)
Algorithm 2 Xs,
feed i to first 2 algorithms but
not to any other algorithms
Y & Algorithm log, n XSlogan

Algorithm for Finding a Non-Zero Item

* If x has k non-zero entries, what’s the expected number of non-zero entries in xg, ?
* For each non-zero entry j in x, let Z; = 1 if j € S;, and Z; = 0 otherwise
*L=%Z,

k
*E[Z] =k E[z] =
1 1
 Var[z] = 3;Var[z] = k- Var(z,] =k (5) (1-3) <
* Ifi = |log, k| — 5, then 32 < E[Z] < 64 and Var[Z] < 64
Var(Z] 1
322 < 16

* If we run a k’-sparse algorithm with k’ = 96 on xg;, we recover a non-zero item of

xg; with probability at least 1-1/16 — 1/10 > 4/5, or output FAIL

* But we don’t know i?

K
21

* By Chebyshev’s inequality, Pr[|Z — E[Z]| = 32] <

Algorithm for Finding a Non-Zero Iltem

* Run a k’=96-sparse vector algorithm on every xg; !

* For each Xs;, our algorithm either returns a non-zero item of
Xs;, and hence of x, or outputs FAIL

* Fori = |log, k| — 5, with probability at least 4/5, we output a
non-zero item of Xs;) and hence of x

« Space is (log, n) - O(k" logn) = 0(log? n) bits!

* (need to store Sy, ..., Sjog, n but can use hash function for these)

4/25/2018

Outline

* Sketching Model
* Estimating the Euclidean norm of a vector
* Finding a non-zero coordinate of a vector

* Graph sketching
* Boruvka’s spanning tree algorithm
* Finding a spanning tree from a sketch

Sketching Graphs

Are there sketches for graphs? Ag is the n x n adjacency matrix of a graph G
* (Ag)i; = 1if{ij}is an edge, and (Ag);; = 0 otherwise

RN

Ac

) —> answer

¢ Is there a distribution on matrices S with a small number of rows so that you can
output a spanning tree of G, given SAg, with high probability?

Application: Graph Streams

Process a graph stream and see the edges of a graph e4, ..., e, in an arbitrary order

Make 1 pass over the stream
Could store stream using O(n?) bits of memory
Can we use only n - poly(log n) bits of memory?

How would you compute a spanning forest?

Computing a Spanning Forest

* For each edge e in the stream

e If , Store edge e

. is “doesn’t form a cycle”

* Store at most n-1 edges, so O(n log n) bits of memory

* But what if you are allowed to delete edges? This is called a dynamic stream

4/25/2018

Handling Deletions with Sketching
* Given S - A, if e is deleted, replace it with S - Ag —S- A = S-Ag_e

* Memory to store S - Ag is (# of rows of S)- n - log n bits
* Also need to store S, which is (# of rows of S)- n - log n bits

* Goal: find S with a small # of rows so that given S - Ag, can output a
spanning tree of G with high probability

* Theorem: there is a distribution on S with O(log? n) rows!

Parallel Computing

Input: G=(V,E)
Gi= (VEI G= (VE:) Gs—(VEs) G4—(VE4)
SAG1 SAG2 SAG3 SAG4

SAg = SAg, + SAg, + SAg, + SAg,

Outline

* Sketching Model
* Estimating the Euclidean norm of a vector
* Finding a non-zero coordinate of a vector

* Graph sketching
* Boruvka’s spanning tree algorithm
* Finding a spanning tree from a sketch

Boruvka’s Spanning Tree Algorithm (Modified)

* Input graph is unweighted and connected

* Initialize edgeset E’ to @
* Create a list of n groups of vertices, each initialized to a single vertex

* While the list has more than one group

* For each group G, include in E’ an edge e from a vertex in G to a vertex not in G

* Merge groups connected by an edge in the previous step

* Find a spanning tree among the edges in E’

Input Graph

4/25/2018

Groups at Beginning of Round 1

<A
B
. C
)
E
°F
G
*H

List of Groups

)

Round 1

Group A

Round 1

Edge A-D

4/2

GGGGGG

Nl

NA

<Nt T
4

RRRRRR

5/2018

GGGGGG

4/2

RRRRRR

GGGGGG

RRRRRR

5/2018

RRRRRR

GGGG

RRRRRR

GGGGGG

RRRRRR

RRRRRR

Round 1

Group J

Round 1

Edge J-H

Round 1 Ends

List of Edges Added

*A-D * |-G
*B-A *J-H

*F-C

* G-E

* H-J

Groups at Beginning of Round 2

List of Groups

* D-A-B
* F-C-E-G-|
* H-J

4/25/2018

RRRRRR

Round 2

Group H-J

e

4/25/2018

Round 2

Edge J-1

Round 2 Ends

List of Edges Added

*B-C
el
e J-l

Spanning Tree

Input Graph

Analysis

* If there are at least 2 groups in an iteration, then each group has an outgoing edge
* Else, graph is disconnected

* If t groups at start of an iteration, at most t/2 groups at end of iteration
* Consider graph with vertices G4, Gy, ..., G, and r edges, where edges
correspond to the groups we connect
¢ Number of groups now at most number of connected components in H. Why?

* After log, n iterations, one group left
e Atmostn+n/2+n/4+..+1< 2nedgesink’

¢ E’ contains a spanning tree
* Invariant: the vertices in a group are connected

4/25/2018

Outline

* Sketching Model
* Estimating the Euclidean norm of a vector
* Finding a non-zero coordinate of a vector

* Graph sketching
* Boruvka’s spanning tree algorithm
* Finding a spanning tree from a sketch

Representing a Graph
* For node i, let a; be a vector indexed by node pairs
* If {i,j} is an edge, a;[i,j] = 1ifj>i, and a;[i,j] = —1ifj<i

* If {i,j} is not an edge, a;[i,j] = 0

{1.2} {1.3} {14} {1.5} {23} {24} {25} {34} {35} {45}

a) = (1T ISARAR0 TR0 0 SuNEE ok
ap; = (=1 0F 050" 1 0ES0RIOOS0)

Representing a Graph

* Lemma: for a subset S of nodes,
Support(Xies a;) = E(S, V\S)

* Proof: for edge {i,j}, if i, j € S, the sum of entries on {i,j}-th column is 0

12} {13} (14 {15} 23} 24) @5} B4 G5} 45
1 000O0O0OO0CO0OTO

a; = o/
az = ({ =108 008 1N DEERN00 0)
\9

4/25/2018

Spanning Tree Algorithm

{12} {1.3} {14} {1.5} {23} {24} {25} {3.4} (3.5} {4.5}
00
00

1
0

* If we delete edge {1, 2} in the stream, then a; and a, become:
*a2,;,=(0100000000)
*a2,=(0000100000)

* If we insert or delete edge {i,j} we just update a; and a; accordingly

* But we can’t write down a; since it is ®(n?)-dimensional

= Million dollar question: what can we do to a vector if we can’t store it?

Spanning Tree Algorithm

* Store a sketch of each a;!

* We’ll need more than 1 sketch of each aj, let’s take O(log n) sketches

* Maintain O(log n) sketches C; - aj, ..., Co(1og n) - @; for each a; in a stream
* C; squashes a; down to O(log? n) bits

e G- aj returns a non-zero item of aj with probability 4/5, or returns FAIL

* A non-zero item of a; is just an edge incident to vertex j!

Spanning Tree Algorithm

* Compute O(log n) sketches C; - aj, ..., Coqog n) - @j for each a;
* C; - aj outputs a non-zero item of a; with probability > 4/5, or returns FAIL
* |[dea: Run Boruvka’s algorithm on sketches!
* For each node j, use C; - aj to get incident edge on j
*Fori=2,.. 0(logn)
* To get incident edge on group G € V, use

D Gai—tc (Z aj) — e € support(D_a;) = E(S, V\ S)

JES Jjes JjES

Spanning Tree Wrapup
* O(n log n) sketches C; - aj, asiand jvary, so O(n log? n) bits of space

* Note: a 1/5 fraction of sketches fail in each iteration in expectation, but a 4/5
fraction of groups get connected with other groups

* Expected number of iterations still O(log n)
* Since sketches are linear, can maintain with insertions and deletions of edges

« Overall, 0(nlog3 n) bits of space to output a spanning tree!

