

Algorithm for Finding a Non-Zero Item

- If x has k non-zero entries, what's the expected number of non-zero entries in x_{S_i} ?
 - For each non-zero entry j in x, let $Z_j = 1$ if $j \in S_i$, and $Z_j = 0$ otherwise
 - $Z = \sum_{j} Z_{j}$,
 - $E[Z] = k \cdot E[Z_j] = \frac{k}{2i}$
 - $Var[Z] = \sum_{i} Var[Z_i] = k \cdot Var[Z_1] = k \left(\frac{1}{2^i}\right) \left(1 \frac{1}{2^i}\right) \le \frac{k}{2^i}$
- If $i = \lfloor \log_2 k \rfloor 5$, then $32 \le E[Z] < 64$ and Var[Z] < 64
- By Chebyshev's inequality, $Pr[|Z E[Z]| \ge 32] \le \frac{Var[Z]}{32^2} \le \frac{1}{16}$
- If we run a k'-sparse algorithm with k' = 96 on x_{S_i} , we recover a non-zero item of x_{S_i} with probability at least 1-1/16 1/10 > 4/5, or output FAIL
- But we don't know i?

Algorithm for Finding a Non-Zero Item

- Run a k'=96-sparse vector algorithm on every x_{S_i} !
- \bullet For each x_{S_i} , our algorithm either returns a non-zero item of x_{S_i} , and hence of x, or outputs FAIL
- For $i = \lfloor \log_2 k \rfloor 5$, with probability at least 4/5, we output a non-zero item of x_{S_i} , and hence of x
- Space is $(\log_2 n) \cdot O(k' \log n) = O(\log^2 n)$ bits!
 - (need to store $S_0, ..., S_{\log_2 n}$ but can use hash function for these)

Outline

- Sketching Model
 - Estimating the Euclidean norm of a vector
 - Finding a non-zero coordinate of a vector
- Graph sketching
 - · Boruvka's spanning tree algorithm
 - Finding a spanning tree from a sketch

Sketching Graphs

Are there sketches for graphs? A_G is the n x n adjacency matrix of a graph G

• $(A_G)_{i,j} = 1$ if $\{i,j\}$ is an edge, and $(A_G)_{i,j} = 0$ otherwise

$$\begin{pmatrix} & & & \\ &$$

• Is there a distribution on matrices S with a small number of rows so that you can output a spanning tree of G, given SA_G, with high probability?

Application: Graph Streams

ullet Process a graph stream and see the edges of a graph e_1, \dots, e_m in an arbitrary order

- Make 1 pass over the stream
- Could store stream using $O(n^2)$ bits of memory
- Can we use only $n \cdot poly(\log n)$ bits of memory?
- How would you compute a spanning forest?

Computing a Spanning Forest

- For each edge e in the stream
 - If ______, store edge e
- is "doesn't form a cycle"
- Store at most n-1 edges, so O(n log n) bits of memory
- But what if you are allowed to delete edges? This is called a dynamic stream

Handling Deletions with Sketching

- Given $S \cdot A_G$, if e is deleted, replace it with $S \cdot A_G S \cdot A_e = S \cdot A_{G-e}$
- Memory to store $S \cdot A_G$ is (# of rows of S)· $n \cdot \log n$ bits • Also need to store S, which is (# of rows of S)· $n \cdot \log n$ bits
- \bullet Goal: find S with a small # of rows so that given $S\cdot A_G$, can output a spanning tree of G with high probability
- Theorem: there is a distribution on S with $O(\log^2 n)$ rows!

Parallel Computing $G_{1}=(V,E_{1})$ $G_{2}=(V,E_{2})$ $G_{3}=(V,E_{3})$ $G_{4}=(V,E_{4})$ $G_{4}=(V,E_{4})$ $G_{3}=(V,E_{3})$ $G_{4}=(V,E_{4})$ $G_{4}=(V,E_{4})$ $G_{4}=(V,E_{4})$ $G_{4}=(V,E_{4})$ $G_{5}=(V,E_{3})$ $G_{4}=(V,E_{4})$ $G_{5}=(V,E_{3})$ $G_{4}=(V,E_{4})$ $G_{4}=(V,E_{4})$ $G_{5}=(V,E_{3})$ $G_{4}=(V,E_{4})$ $G_{5}=(V,E_{3})$ $G_{4}=(V,E_{4})$ $G_{5}=(V,E_{3})$ $G_{5}=(V,E_{3})$ $G_{5}=(V,E_{3})$ $G_{6}=(V,E_{4})$ $G_{7}=(V,E_{3})$ $G_{7}=(V,E_{3})$ $G_{8}=(V,E_{3})$ $G_{8}=(V$

Outline

- Sketching Model
 - Estimating the Euclidean norm of a vector
 - Finding a non-zero coordinate of a vector
- Graph sketching
 - Boruvka's spanning tree algorithm
 - Finding a spanning tree from a sketch

Boruvka's Spanning Tree Algorithm (Modified)

- Input graph is unweighted and connected
- Initialize edgeset E' to \emptyset
- Create a list of n groups of vertices, each initialized to a single vertex
- · While the list has more than one group
 - For each group G, include in E' an edge e from a vertex in G to a vertex not in G
 - Merge groups connected by an edge in the previous step
- Find a spanning tree among the edges in E'

Analysis

- If there are at least 2 groups in an iteration, then each group has an outgoing edge
 - · Else, graph is disconnected
- If t groups at start of an iteration, at most t/2 groups at end of iteration
 - Consider graph with vertices $G_1,\,G_2,\,\dots,\,G_r$ and r edges, where edges correspond to the groups we connect
 - Number of groups now at most number of connected components in H. Why?
- After log₂ n iterations, one group left
 - At most $n + n/2 + n/4 + ... + 1 \le 2n$ edges in E'
- · E' contains a spanning tree
 - Invariant: the vertices in a group are connected

Outline

- Sketching Model
 - Estimating the Euclidean norm of a vector
 - Finding a non-zero coordinate of a vector
- Graph sketching
 - Boruvka's spanning tree algorithm
 - Finding a spanning tree from a sketch

Representing a Graph

- For node i, let a_i be a vector indexed by node pairs
- If $\{i,j\}$ is an edge, $a_i[i,j] = 1$ if j > i, and $a_i[i,j] = -1$ if j < i
- If $\{i,j\}$ is not an edge, $a_i[i,j] = 0$

Representing a Graph

- Lemma: for a subset S of nodes, $Support(\sum_{i \in S} a_i) = E(S, V \backslash S)$
- Proof: for edge $\{i,j\}$, if $i,j \in S$, the sum of entries on $\{i,j\}$ -th column is 0

Spanning Tree Algorithm

- If we delete edge $\{1, 2\}$ in the stream, then a_1 and a_2 become:
 - $a_1 = (0 \ 1 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0)$
 - $a_2 = (0\ 0\ 0\ 0\ 1\ 0\ 0\ 0\ 0)$
- If we insert or delete edge {i,j} we just update ai and ai accordingly
- But we can't write down \boldsymbol{a}_i since it is $\Theta(n^2)\text{-dimensional}$
- Million dollar question: what can we do to a vector if we can't store it?

Spanning Tree Algorithm

- Store a sketch of each a_i!
- We'll need more than 1 sketch of each a_i, let's take O(log n) sketches
- Maintain O(log n) sketches $C_1 \cdot a_i$, ..., $C_{O(\log n)} \cdot a_i$ for each a_i in a stream
- C_i squashes a_i down to $O(\log^2 n)$ bits
- $C_i \cdot a_i$ returns a non-zero item of a_i with probability 4/5, or returns FAIL
- A non-zero item of a_i is just an edge incident to vertex j!

Spanning Tree Algorithm

- • Compute O(log n) sketches C $_1 \cdot a_j, ...$, C $_{O(log \ n)} \cdot a_j$ for each a_j
- $C_i \cdot a_j$ outputs a non-zero item of a_j with probability > 4/5, or returns FAIL
- Idea: Run Boruvka's algorithm on sketches!
- \bullet For each node j, use $\boldsymbol{C}_i \cdot \boldsymbol{a}_i$ to get incident edge on j
- For i = 2, ..., O(log n)
 - To get incident edge on group $G \subseteq V$, use

$$\sum_{j \in S} C_i \mathbf{a}_j = C_i \left(\sum_{j \in S} \mathbf{a}_j \right) \longrightarrow \mathbf{e} \in \mathsf{support}(\sum_{j \in S} \mathbf{a}_j) = E(S, V \setminus S)$$

Spanning Tree Wrapup

- O(n log n) sketches $C_i \cdot a_i$, as i and j vary, so $O(n \log^3 n)$ bits of space
- Note: a 1/5 fraction of sketches fail in each iteration in expectation, but a 4/5 fraction of groups get connected with other groups
- Expected number of iterations still O(log n)
- Since sketches are linear, can maintain with insertions and deletions of edges
- Overall, $O(n \log^3 n)$ bits of space to output a spanning tree!