
Cloud Storage 2

15-719/18-709: Advanced Cloud Computing

Greg Ganger

George Amvrosiadis

Majd Sakr

Feb 11, 2019 15-719/18-709: Advanced Cloud Computing 1

Agenda: Cloud-scale storage

• Scalable storage: essential for scalable cloud 
systems

• Approach 1: extend familiar distributed file systems
• Basic design tradeoffs: statelessness, caching, etc.
• NASD: scaling the data transfer path
• Haystack: optimize for specific workload
• GFS: fault-tolerance, targeted consistency model
• TableFS: efficiency for small files too

• Approach 2: abandon traditional file system model
• Examples: AWS S3, AWS EBS, Docker

Feb 11, 2019 15-719/18-709: Advanced Cloud Computing 2

Covered

today

Covered

Wednesday



Log Structured Merge (LSM) 
Trees
• Insert / Updates

• Buffer and sort recent inserts/updates in memory

• Write-out sorted buffers into local file system sequentially

• Less random disk writes than traditional B-Tree

• Lookup / Scan
• Search sorted tables one by one from the disk

• Compaction is merge sort into new files, deleting old (cleaning)

• Bloom-filter and in-memory index to reduce lookups

15-719/18-709: Advanced Cloud Computing 3

Memory buffer
Disk

Sorted Table 1

Sorted Table 2
……

Feb 11, 2019

Write Optimized like LFS
(cleaning = compaction)

Feb 11, 2019 15-719/18-709: Advanced Cloud Computing 4

[Lanyue Lu, FAST16]

• (Cacheable) index 
per SSTable

• Lists 1st & last key 
per SSTable

Clean so there is no 
overlap in SSTables in 

each level after 0



O(log size) lookup like B-tree

Feb 11, 2019 15-719/18-709: Advanced Cloud Computing 5

[Lanyue Lu, FAST16]

• (Cacheable) Bloom 
filter per SSTable

• Skip ~99% 
unneeded lookups

TableFS: metadata in LSM Trees

• Small objects embedded in LSM tree (tabular structure)
• E.g. directory entries, inodes, small files

• Turn many small files into one large object (~ 2MB)

• Larger files stored in object store indexed by
TableFS-assigned IDs

15-719/18-709: Advanced Cloud Computing 6

Object 0 ….

Object Store

Directory entries, 
Inodes,
Small files (<4KB)

Large files (> 4KB)

[Kai Ren, ATC13]

Feb 11, 2019



Table Schema
• Key: <Parent inode number, hash(filename)>

• Inodes with multiple hard links: <inode number, null>

• Value: filename, inode attrs, inlined file data (or symlink to large object)

15-719/18-709: Advanced Cloud Computing 7

Key Value

<0,hash(home)> 1, “home”, struct stat

<1,hash(foo)> 2, “foo”, struct stat

<1,hash(bar)> 3, “bar”, struct stat

<2,hash(apple)> 4, “apple”, hard link

<2,hash(book)> 5, “book”, struct stat, 
inline small file

<3,hash(pear)> 4, “pear”, hard link

<4,null> 4, struct stat, 
large file pointer

Le
xi

co
gr

ap
hi

c 
or

de
r

book

/

home

foo bar

apple pear

0

32

1

4
5

[Kai Ren, ATC13]

Feb 11, 2019

Table Schema (cont)
• Advantages: 

• Fewer random lookups by co-locating dir entries with inode attrs, 
small files

• “readdir” performs sequential scan on the table

15-719/18-709: Advanced Cloud Computing 8

Key Value

<0,hash(home)> 1, “home”, struct stat

<1,hash(foo)> 2, “foo”, struct stat

<1,hash(bar)> 3, “bar”, struct stat

<2,hash(apple)> 4, “apple”, hard link

<2,hash(book)> 5, “book”, struct stat, 
inline small file

<3,hash(pear)> 4, “pear”, hard link

<4,null> 4, struct stat, 
large file pointer

Entries in 
the same 
directory

[Kai Ren, ATC13]

Feb 11, 2019



Popular cloud storage options
• 1. Provide a ”traditional” filesystem

– The OS running in each VM mounts file service
• just like any client would in client-server distributed FS

– E.g., NFS, AFS, Google file system, HDFS
– Discussed on Monday

• 2. Provide block stores (virtual disks)
• 3. Provide a “union” filesystem on each client
• 4. Provide an “object store”

9

2. Provide block stores (virtual disks)
• A common option in VM-based environments

– Guest OS running in a VM has code for FSs on disks
• assumes that it has private access to disk capacity

– So, give it a “disk” to use
• but, giving it a physical disk isn’t VM/cloud style

• Virtual disk looks to guest OS just like real disk
– Same interface

• read/write of fixed-size blocks, ID’d by block number
– Guest OS can format it, implement an FS atop it, etc.

• VMM makes guest OS disk operations access the right content

• Most cloud infrastructures have this option
– E.g., AWS Elastic Block Store (EBS), OpenStack Cinder

10



 Virtual Disk (VD) implementation
• Client OSs think that they are using a real disk

– So, they use disk-like block interfaces
• e.g., SCSI rather than NFS

– Guest OS may or may not know virtual disk is local
• Non-local interface: network-disk interface (iSCSI)
• Local interface: VMM translates to other protocol as needed

• VDs often implemented as files
– A file is a sequence of bytes

• So, a file can hold a sequence of fixed-sized blocks
– So, a file server can be used for VDs

• E.g., each VD is a file
• May be accessed by block protocol or file protocol

– E.g., via non-local or local from above, 
respectively

11

 More Virtual Disk (VD) stuff
• Thin provisioning

– Promise more space that you have
• E.g., tell 20 VMs they each get 1TB, but only have 10TB

– Allocate physical space only for blocks that get written
• Most devices are not used to full capacity
• Benefits from TRIM and other storage class stuff ☺

• Performance interference
– Each VM may have a virtual disk

• OS in VM assumes it will behave like a real disk
– Including performance behavior!

– We expect time-sharing to have fairness / QoS
• Need it for storage too
• But, it’s very difficult

– Interference in caches, on-disk placement, metadata, ….
12



One aggressive demonstration of Quality of Storage

• IOFlow: a Software-Defined Storage Architecture.

Eno Thereska, Hitesh Ballani, Greg O’Shea, Thomas Karagiannis, 

Antony Rowstron, Tom Talpey, Richard Black, Timothy Zhu.

SOSP 2013, Farmington PA, Nov 2013.

o SDN “forwarding rules” replaced with “request queue ordering”

o Flows are abstraction of SLO, service binding, data & requests

• Used for bandwidth allocation & sharing, content checking, 
prioritization for latency 

Feb 11, 2019 15-719/18-709: Advanced Cloud 
Computing 13

3. Provide “union” filesystems
• A common option in container-based environments

– Container runs atop OS
– Container is given access to (part of) file system

• usually thinks it has entire FS (via chroot)
– Needs some “system-wide” and some “private” files

• so, we want to give it both
• Make a single FS view from multiple FSs

– Show contents of a directory as merge of several
• With a sorted order when there are name conflicts

– Implemented by a layer atop the individual FSs
• Each operation accesses “unioned” FSs as appropriate

14



4. Provide “object” store
• A common option in large clouds

– A simplified, generic “file” storage system
• Like files, objects are sequences of bytes
• Unlike FSs, usually just numerical object IDs

– Example: AWS S3
• Some (e.g., box or iCloud) provide simple directories too

• Usually limited interface and semantics
– E.g., CRUD API: Create, Read (get), Update (put), Delete

• No open/close, rename, links, locks, etc.
– Often assumes single writer, sequential (or all-at-once)

• No promises re: sharing/concurrency, interrupted writes, etc.

15

Next

• Cool Saurabh talk about analytics storage atop S3

• Next

o Wednesday: tail latency

o Next week: frameworks-2 and key-value stores

Feb 11, 2019 15-719/18-709: Advanced Cloud 
Computing 16



PARALLEL DATA 
LABORATORY
Carnegie Mellon UniversityCarnegie Mellon

Parallel Data Laboratory

A Case for Packing and 
Indexing in 

Cloud File Systems

Saurabh Kadekodi
Bin Fan*, Adit Madan*, Garth Gibson

, *Alluxio Inc.

Packing

Bin

17

Carnegie Mellon
Parallel Data Laboratory
http://www.pdl.cmu.edu
/ Saurabh Kadekodi © February 18

Workload
• Spark job processing all data in memory and 

producing 3.2 million 8KB files

• Packing tiny files improves throughput and reduces 
cost

• By how much?

18

http://www.pdl.cmu.edu


Carnegie Mellon
Parallel Data Laboratory
http://www.pdl.cmu.edu
/ Saurabh Kadekodi © February 18

Improved Throughput Guess?

• 10x

• 25x

• 50x

• 100x

• more

19

61x more

Carnegie Mellon
Parallel Data Laboratory
http://www.pdl.cmu.edu
/ Saurabh Kadekodi © February 18

• 10x

• 25x

• 50x

• 100x

• more

Reduced Experiment Price?

20

25000x less

http://www.pdl.cmu.edu
http://www.pdl.cmu.edu


Carnegie Mellon
Parallel Data Laboratory
http://www.pdl.cmu.edu
/ Saurabh Kadekodi © February 18

Problem Statement

21

• To augment a cloud file system’s write-back cache 
with a packing and indexing layer that coalesces small 
files or segments of slow-growing files to transform 
arbitrary user workload(s) to a write pattern more 
ideal for cloud storage in terms of — transfer sizes, 
number of objects and price.

• tl;dr — Batch cloud writes and make large transfers.

• Invariant: Never write small files to backing cloud 
stores.

Carnegie Mellon
Parallel Data Laboratory
http://www.pdl.cmu.edu
/ Saurabh Kadekodi © February 18

Alluxio

22

Packing Virtual Under File System (vUFS)
Under 
File System
(UFS)

Spark MapReduce Flink Zeppelin Presto …

S3 
(Amazon)

GCS
(Google) Swift HDFS GlusterFS …

http://www.pdl.cmu.edu
http://www.pdl.cmu.edu


Carnegie Mellon
Parallel Data Laboratory
http://www.pdl.cmu.edu
/ Saurabh Kadekodi © February 18

Motivation

23

Performance Price

Carnegie Mellon
Parallel Data Laboratory
http://www.pdl.cmu.edu
/ Saurabh Kadekodi © February 18

Performance Motivation

24

• r4.4xlarge EC2 instances

• 4 Alluxio workers

• 1 Alluxio masters

• ~13 GB data

• Increasing file sizes (4KB - 400MB)

• 3.2M files of size 4KB (smallest)

• 32 files of 400 MB (largest)

http://www.pdl.cmu.edu
http://www.pdl.cmu.edu


Carnegie Mellon
Parallel Data Laboratory
http://www.pdl.cmu.edu
/ Saurabh Kadekodi © February 18

Throughput By Object Size

25

Carnegie Mellon
Parallel Data Laboratory
http://www.pdl.cmu.edu
/ Saurabh Kadekodi © February 18

S3 Throttling in Action

26

• Request rate throttling by S3 for 4KB writes

• S3 warns routinely requesting >100 PUT req / sec subject to 
throttling

• NW bandwidth of r4.4xlarge instances ~ 10 Gigabit / sec => 
minimum 13MB writes to avoid being throttled => packing

http://www.pdl.cmu.edu
http://www.pdl.cmu.edu


Carnegie Mellon
Parallel Data Laboratory
http://www.pdl.cmu.edu
/ Saurabh Kadekodi © February 18

Motivation

27

Performance Price

Carnegie Mellon
Parallel Data Laboratory
http://www.pdl.cmu.edu
/ Saurabh Kadekodi © February 18

Price Motivation

28

• For just one million files, the put cost = $5

• Packing can reduce cost by at least the packing 
factor

S3 Pricing
Model

PUT, COPY, 
POST GET Data Retrieval 

Cost

Standard
$0.05 / 

10000 req, 
same for retries

$0.04 / 
100000 req, 

same for retries

Free 
(for certain data 
center locations)

Standard w/
Infrequent 

Access

$0.1 /
10000 req, 
no retries

$0.1 / 
100000 req,
no retries

$0.01 / GB

http://www.pdl.cmu.edu
http://www.pdl.cmu.edu


Carnegie Mellon
Parallel Data Laboratory
http://www.pdl.cmu.edu
/ Saurabh Kadekodi © February 1829

Design

Carnegie Mellon
Parallel Data Laboratory
http://www.pdl.cmu.edu
/ Saurabh Kadekodi © February 18

The Packing Modules

30

S3Client AM

S3

RAM

S3

RAM

S3

A
W

A
W

P

P

P

http://www.pdl.cmu.edu
http://www.pdl.cmu.edu


Carnegie Mellon
Parallel Data Laboratory
http://www.pdl.cmu.edu
/ Saurabh Kadekodi © February 18

A Packed Blob

31

• Packing policy determines what to pack
• Triggered by dirty bytes & timeout

Embedded Index

Blob Extent: alluxio-path:logical-offset:physical-offset:length 

Embedded Index 
byte offset

als
o 

fil
e 

na
m

e

complete
small files

slices of
large filesblob-extent 1

blob-extent 2
……

blob-extent k

Blob Name: workerIP:indexOffset:timestamp 

Carnegie Mellon
Parallel Data Laboratory
http://www.pdl.cmu.edu
/ Saurabh Kadekodi © February 18

Blob Descriptor Table - BDT (Index)

32

• Maps Alluxio files      Current Location

• Implemented as LevelDB to bound 
memory usage

• Global BDT in centralized location

• Each worker has BDT as optimization

http://www.pdl.cmu.edu
http://www.pdl.cmu.edu


Carnegie Mellon
Parallel Data Laboratory
http://www.pdl.cmu.edu
/ Saurabh Kadekodi © February 1833

Evaluation

Carnegie Mellon
Parallel Data Laboratory
http://www.pdl.cmu.edu
/ Saurabh Kadekodi © February 18

Configuration

34

• Experiment - Small file concurrent create (avg of 2 runs)

• 1 AlluxioMaster (i.e. 1 PackingMaster)

• 4 AlluxioWorkers (i.e. 4 PackingWorkers)

• 32 concurrent clients (workload generators) — 8 per 
AW

• 100K files (each 8KB) per client ~ totally 3.2M files

• Total workload size: 24.4 GB

http://www.pdl.cmu.edu
http://www.pdl.cmu.edu


Carnegie Mellon
Parallel Data Laboratory
http://www.pdl.cmu.edu
/ Saurabh Kadekodi © February 18

Packing Configuration

35

• Max blob size: 1 GB

• Packing interval: 5 sec

• # Packing threads: 16

• # Master threads: 16

• Backup interval: 1 min

Carnegie Mellon
Parallel Data Laboratory
http://www.pdl.cmu.edu
/ Saurabh Kadekodi © February 18

Motivation Revisited

36

Performance Price

http://www.pdl.cmu.edu
http://www.pdl.cmu.edu


Carnegie Mellon
Parallel Data Laboratory
http://www.pdl.cmu.edu
/ Saurabh Kadekodi © February 18

Write Performance Comparison

37

61
x

61x

M
B 

/ s
ec

Se
co

nd
s

G
B

Carnegie Mellon
Parallel Data Laboratory
http://www.pdl.cmu.edu
/ Saurabh Kadekodi © February 18

Motivation Revisited

38

Performance Price

http://www.pdl.cmu.edu
http://www.pdl.cmu.edu


Carnegie Mellon
Parallel Data Laboratory
http://www.pdl.cmu.edu
/ Saurabh Kadekodi © February 18

Cloud Storage Price

39

S3 Pricing
Model

PUT, COPY, 
POST GET Data Retrieval 

Cost

Standard
$0.05 / 

10000 req, 
same for retries

$0.04 / 
100000 req, 

same for retries

Free 
(for certain data 
center locations)

Standard w/
Infrequent 

Access

$0.1 /
10000 req, 
no retries

$0.1 / 
100000 req,
no retries

$0.01 / GB

Carnegie Mellon
Parallel Data Laboratory
http://www.pdl.cmu.edu
/ Saurabh Kadekodi © February 18

S3 Data Ingest Price

40

• Request rate is throttled much more than data rate

25000x

http://www.pdl.cmu.edu
http://www.pdl.cmu.edu


Carnegie Mellon
Parallel Data Laboratory
http://www.pdl.cmu.edu
/ Saurabh Kadekodi © February 18

 Conclusion

41

• S3 prefers large objects

• S3 rate limits ops / sec to their buckets

• Packing eliminates this problem by:

• Reducing ops made to S3 by at least 1000x

• Making much more infrequent accesses

Carnegie Mellon
Parallel Data Laboratory
http://www.pdl.cmu.edu
/ Saurabh Kadekodi © February 18

Questions?

42

Thank You!

http://www.pdl.cmu.edu
http://www.pdl.cmu.edu


Carnegie Mellon
Parallel Data Laboratory
http://www.pdl.cmu.edu
/ Saurabh Kadekodi © February 18

The Packing Modules

43

AWAM BDT

PM PW

PvUFS

The
Packing
Module

BDT

BDT

Carnegie Mellon
Parallel Data Laboratory
http://www.pdl.cmu.edu
/ Saurabh Kadekodi © February 18

Packing Write Flow

44

Client

RAM

RAM

Write File

Al
lu

xi
o 

M
as

te
r N

od
e

Al
lu

xi
o 

W
or

ke
r N

od
e

C
re

at
e 

Fi
le

f1:inode

AW 
Handle

Write FileWrite FileClose File f1

f1:w1

fk Index

Blob
Obj

S3 UFS
To cloud

fk:w1

fk:bkf1:b1

fk:bkf1:b1 fk:bkf1:b1

BDT 
bkp

S3 UFS

To
 c

lo
ud

Packing Master

Packing Worker

http://www.pdl.cmu.edu
http://www.pdl.cmu.edu


Carnegie Mellon
Parallel Data Laboratory
http://www.pdl.cmu.edu
/ Saurabh Kadekodi © February 18

Packing Read Flow

45

Client

Al
lu

xi
o 

M
as

te
r N

od
e

Al
lu

xi
o 

W
or

ke
r N

od
e

O
pe

n 
Fi

le
f1:inode

AW 
Handle

Read f1 f1 fk

S3 UFS
Read from 

cloud

fk:w1f1:w1

S3 UFS

f1

fk:bkf1:b1

f2k:w2fk+1:w2

RAM

RAM

Packing Master

Packing Worker

Read fk+1

Locate fk+1

w2 Read fk+1

fk+1

To w2

f1

Read f1

http://www.pdl.cmu.edu

