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Agenda: Cloud-scale storage

* Scalable storage: essential for scalable cloud
systems

o\‘e@%gproach 1: extend familiar distributed file systems
“Ae&\e" * Basic design tradeoffs: statelessness, caching, etc.
* NASD: scaling the data transfer path
* Haystack: optimize for specific workload
* GFS: fault-tolerance, targeted consistency model
* TableFS: efficiency for small files too
\‘e@%pproach 2: abandon traditional file system model

)
© o8 « Examples: AWS $3, AWS EBS, Docker
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Log Structured Merge (LSM)
Trees

* Insert / Updates
* Buffer and sort recent inserts/updates in memory
* Write-out sorted buffers into local file system sequentially
* Less random disk writes than traditional B-Tree

* Lookup / Scan
* Search sorted tables one by one from the disk
* Compaction is merge sort into new files, deleting old (cleaning)
* Bloom-filter and in-memory index to reduce lookups

Memory buffer

 Duml——
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Write Optimized like LFS
(cleaning = compaction)

L SM-trees: Insertion

1.Write sequentidly 2 Sort datafor quick lookups
3. Sorting and gerbage collection are coupled
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[Lanyue Lu, FAST16]




O(log size) lookup like B-tree

| SM-trees: Lookup

1. Randomreads
2. Travd meny levels for alarge LSM-tree
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TableFS: metadata in LSM Trees

* Small objects embedded in LSM tree (tabular structure)
* E.g. directory entries, inodes, small files
* Turn many small files into one large object (~ 2MB)

* Larger files stored in object store indexed by

TableFS-assigned IDs
/ Large files (> 4KB)
Inodes,

Small files (<4KB) Object 0 ...
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Directory entries,




Table Schema

* Key: <Parent inode number, hash(filename)>
* Inodes with multiple hard links: <inode number, null>

* Value: filename, inode attrs, inlined file data (or symlink to large object)
[Kai Ren, ATC13]

I 10 | Ky | vale |
« | <0,hash(home)> 1, “home”, struct stat
)
home 1 T | <1,hash(foo)> 2, “foo”, struct stat
o
© | <1,hash(bar)> 3, “bar”, struct stat
<
S | <2 hash(apple)> 4, “apple”, hard link
foo 2 bar> 3 o
g> <2,hash(book)> 5, “book”, struct stat,
‘E’ inline small file
book apple pear 9 | <3,hash(pear)> 4, “pear”, hard link
5 <4,null> 4, struct stat,
4 large file pointer
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Table Schema (cont)

* Advantages:

* Fewer random lookups by co-locating dir entries with inode attrs,
small files

* “readdir” performs sequential scan on the table

<0,hash(home)> 1, “home”, struct stat

Entries in e 2, “foo”, struct stat
the same

directory

<1,hash(bar)> 3, “bar”, struct stat
<2,hash(apple)> 4, “apple”, hard link

<2,hash(book)> 5, “book”, struct stat,
inline small file

<3,hash(pear)> 4, “pear”, hard link

<4,null> 4, struct stat,
large file pointer [Kai Ren, ATC13]
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Popular cloud storage options

1. Provide a "traditional” filesystem

— The OS running in each VM mounts file service

+ just like any client would in client-server distributed FS
— E.g., NFS, AFS, Google file system, HDFS
— Discussed on Monday

2. Provide block stores (virtual disks)
* 3. Provide a “union” filesystem on each client
* 4. Provide an “object store”

—

2. Provide block stores (virtual disks)

* A common option in VM-based environments
— Guest OS running in a VM has code for FSs on disks
assumes that it has private access to disk capacity
— So, give it a “disk” to use
but, giving it a physical disk isn’t VM/cloud style
« Virtual disk looks to guest OS just like real disk
— Same interface
read/write of fixed-size blocks, ID’d by block number
— Guest OS can format it, implement an FS atop it, etc.
VMM makes guest OS disk operations access the right content
» Most cloud infrastructures have this option
— E.g., AWS Elastic Block Store (EBS), OpenStack Cinder

10




e
Virtual Disk (VD) implementation

* Client OSs think that they are using a real disk

- So, they use disk-like block interfaces
e.g., SCSI rather than NFS

— Guest OS may or may not know virtual disk is local
Non-local interface: network-disk interface (iSCSI)
Local interface: VMM translates to other protocol as needed

* VDs often implemented as files

- Afile is a sequence of bytes
So, a file can hold a sequence of fixed-sized blocks
- So, afile server can be used for VDs
E.g., each VD is afile
May be accessed by block protocol or file protocol
- E.g., via non-local or local from above, "

—

More Virtual Disk (VD) stuff

* Thin provisioning
— Promise more space that you have
E.g., tell 20 VMs they each get 1TB, but only have 10TB
— Allocate physical space only for blocks that get written
Most devices are not used to full capacity
Benefits from TRIM and other storage class stuff ©

 Performance interference

— Each VM may have a virtual disk
OS in VM assumes it will behave like a real disk
— Including performance behavior!
— We expect time-sharing to have fairness / QoS
Need it for storage too
But, it's very difficult
— Interference in caches, on-disk placement, metadata, ....
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One aggressive demonstration of Quality of Storage

® |OFlow: a Software-Defined Storage Architecture.

Eno Thereska, Hitesh Ballani, Greg O'Shea, Thomas Karagiannis,
Antony Rowstron, Tom Talpey, Richard Black, Timothy Zhu.
SOSP 2013, Farmington PA, Nov 2013.

o SDN “forwarding rules” replaced with “request queue ordering”

o Flows are abstraction of SLO, service binding, data & requests

* Used for bandwidth allocation & sharing, content checking,
prioritization for latency
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3. Provide “union” filesystems

« A common option in container-based environments

— Container runs atop OS

— Container is given access to (part of) file system
+ usually thinks it has entire FS (via chroot)

— Needs some “system-wide” and some “private” files
* so0, we want to give it both

* Make a single FS view from multiple FSs
— Show contents of a directory as merge of several
» With a sorted order when there are name conflicts
— Implemented by a layer atop the individual FSs
» Each operation accesses “unioned” FSs as appropriate




4. Provide “object” store

« A common option in large clouds
— A simplified, generic “file” storage system
» Like files, objects are sequences of bytes
* Unlike FSs, usually just numerical object IDs

— Example: AWS S3
+ Some (e.g., box or iCloud) provide simple directories too
» Usually limited interface and semantics

— E.g., CRUD API: Create, Read (get), Update (put), Delete
* No open/close, rename, links, locks, etc.

— Often assumes single writer, sequential (or all-at-once)
* No promises re: sharing/concurrency, interrupted writes, etc.

Next

* Cool Saurabh talk about analytics storage atop S3

®* Next

o Wednesday: tail latency

o Next week: frameworks-2 and key-value stores
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A Case for Pagking and
Indexing in
Cloud File Systems
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PARALLEL DATA Alluxio |
LABORATORY » AlIUXIO InC.

Carnegie Mellon Carnegie Mellon University

Parallel Data Laboratory

17

Workload

* Spark job processing all data in memory and
producing 3.2 million 8KB files

* Packing tiny files improves throughput and reduces
cost

* By how much?

Carnegie Mellon
Parallel Data Laboratory
A A 1}
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Improved Throughput Guess!?
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Reduced Experiment Price?
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Problem Statement

« To augment a cloud file system’s write-back cache
with a packing and indexing layer that coalesces small
files or segments of slow-growing files to transform
arbitrary user workload(s) to a write pattern more
ideal for cloud storage in terms of — transfer sizes,
number of objects and price.

« tl;,dr — Batch cloud writes and make large transfers.

« Invariant: Never write small files to backing cloud
stores.

Carnegie Mellon
Parallel Data Laboratory
juusiomzaasioiReimneRzioio
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Alluxio

Spark MapReduce Flink Zeppelin Presto

Native File System Hadoop Compatible Native Key-Value FUSE Compatible
Interface FS Interface Interface FS Interface

/A ALLUXIO

Packing Virtual Under File System (VUFS)

S3 (Amazon) GCS (Google) Swift HDFS GlusterFS NFS
Adapter Adapter Adapter Adapter Adapter Adapter

S3 GCS

(Amazon) (Google) Swift HDFS GlusterFS

Carnegie Mellon
Parallel Data Laboratory
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Motivation

Performance

Carnegie Mellon
Parallel Data Laboratory
R 19}

Price

/ ] 23

Saurabh Kadekodi © February 18

Performance Motivation

* r4.4xlarge EC2 instances

» 4 Alluxio workers

* | Alluxio masters

- ~13 GB data

« Increasing file sizes (4KB - 400MB)
« 3.2M files of size 4KB (smallest)
» 32 files of 400 MB (largest)

Carnegie Mellon
Parallel Data Laboratory

iittomrauynsicinsiiisnsis
/ 24
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Throughput By Object Size
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PUT req / sec

S3 Throttling in Action

333

=
(=

Time

« Request rate throttling by S3 for 4KB writes

« S3 warns routinely requesting >100 PUT req / sec subject to
throttling

« NWV bandwidth of r4.4xlarge instances ~ 10 Gigabit / sec =>
minimum |3MB writes to avoid being throttled => packing

Carnegie Mellon
Parallel Data Laboratory
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Motivation

Performance Price

Carnegie Mellon
Parallel Data Laboratory
fuisiomraiiimieiRonnionsioio
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Price Motivation

S3 Pricing PUT, COPY, Data Retrieval

Model POST GET

Cost

$0.05 / $0.04 / Free
Standard 10000 req, 100000 req, (for certain data
same for retries | same for retries | center locations)
Standard w/ $0.1 / $0.1 /
Infrequent 10000 req, 100000 req, $0.01 / GB
Access no retries no retries

« For just one million files, the put cost = $5

« Packing can reduce cost by at least the packing
factor

Carnegie Mellon
Parallel Data Laboratory
fuisiomraiaiavmsinoinisnsioio
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Design

Carnegie Mellon
Parallel Data Laboratory
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The Packing Modules
A
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A Packed Blob

Blob Name:»workerIP:indexOffset:timestamp

complete

- . small files
Embedded Index —pp» - -

Embedded Index slices of
byte Offset blob-extent | |a|~ge ﬁ|es
blob-extent 2

also file name

blob-extent k

Blob Extent: alluxio-path:logical-offset:physical-offset:length

« Packing policy determines what to pack
camegicMetlon * 1 Figgered by dirty bytes & timeout

Parallel Data Laboratory
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Blob Descriptor Table - BDT (Index)

Maps Alluxio files  Current Location

Implemented as LevelDB to bound
memory usage

Global BDT in centralized location

Each worker has BDT as optimization

Carnegie Mellon
Parallel Data Laboratory
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Evaluation

Carnegie Mellon
Parallel Data Laboratory
juusiomzaasioiReimneRzioio
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Configuration

 Experiment - Small file concurrent create (avg of 2 runs)

| AlluxioMaster (i.e. | PackingMaster)

4 AlluxioWorkers (i.e. 4 PackingWorkers)

32 concurrent clients (workload generators) — 8 per
AW

| 00K files (each 8KB) per client ~ totally 3.2M files

- Total workload size: 24.4 GB

Carnegie Mellon
Parallel Data Laboratory
SR porerea
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Packing Configuration

« Max blob size: | GB

« Packing interval: 5 sec
« # Packing threads: 16
-« # Master threads: 16

« Backup interval: | min

Carnegie Mellon
Parallel Data Laboratory
R ! 19}
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Motivation Revisited

Performance Price

Carnegie Mellon
Parallel Data Laboratory
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Motivation Revisited

N

Performance

Carnegie Mellon
Parallel Data Laboratory

Price
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Cloud Storage Price

S3 Pricing PUT, COPY, Data Retrieval

Model POST Cost

$0.05 / $0.04 / Free
Standard 10000 req, 100000 req, (for certain data
same for retries | same for retries | center locations)

Standard w/ $0.1/ $0.1/

Infrequent 10000 req, 100000 req, $0.01 / GB
Access no retries no retries

Carnegie Mellon
Parallel Data Laboratory
fuisiomraiiimieiRonnionsioio
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S3 Data Ingest Price

0729 100000957820
1000
100000
100
10 2, 10000
*Directy 1000
*"Pack
w 100
0.01 :
0.001 10

1
Data Ingest Rate-

+ Request rate is throttled much more than data rate

Carnegie Mellon
Parallel Data Laboratory
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Conclusion

- S3 prefers large objects

- S3 rate limits ops / sec to their buckets

» Packing eliminates this problem by:
 Reducing ops made to S3 by at least 1000x
« Making much more infrequent accesses

Carnegie Mellon
Parallel Data Laboratory
R 19}
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Questions!?

Thank You!

Carnegie Mellon
Parallel Data Laboratory
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The Packing Modules
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Packing Write Flow
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Packing Read Flow
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