Cloud Storage 2

15-719/18-709: Advanced Cloud Computing

Greg Ganger
George Amvrosiadis
Majd Sakr

Feb 11,2019 15-719/18-709: Advanced Cloud Computing 1

Agenda: Cloud-scale storage

* Scalable storage: essential for scalable cloud
systems

o\‘e@%gproach 1: extend familiar distributed file systems
“Ae&\e" * Basic design tradeoffs: statelessness, caching, etc.
* NASD: scaling the data transfer path
* Haystack: optimize for specific workload
* GFS: fault-tolerance, targeted consistency model
* TableFS: efficiency for small files too
\‘e@%pproach 2: abandon traditional file system model

)
© o8 « Examples: AWS $3, AWS EBS, Docker

Feb 11, 2019 15-719/18-709: Advanced Cloud Computing 2

Log Structured Merge (LSM)
Trees

* Insert / Updates
* Buffer and sort recent inserts/updates in memory
* Write-out sorted buffers into local file system sequentially
* Less random disk writes than traditional B-Tree

* Lookup / Scan
* Search sorted tables one by one from the disk
* Compaction is merge sort into new files, deleting old (cleaning)
* Bloom-filter and in-memory index to reduce lookups

Memory buffer

 Duml——

Feb 11, 2019 15-719/18-709: Advanced Cloud Computing 3

Write Optimized like LFS
(cleaning = compaction)

L SM-trees: Insertion

1.Write sequentidly 2 Sort datafor quick lookups
3. Sorting and gerbage collection are coupled

Clean so there is no
overlap in SSTables in
each level after 0

3 2
e agll <— [ap=nlF «— KV
menory &1
dlisk 4 K2
wens () () 5 lLogl * (Cacheable) index
1109
SSTabl
LagDB ‘!ione 000 _J . E_er X a&T .
toone () (O O O O ists 1st & last key

per SSTable

s QO0OQ0O0O0

Feb 11, 2019 15-719/18-709: Advanced Cloud Computing 4

[Lanyue Lu, FAST16]

O(log size) lookup like B-tree

| SM-trees: Lookup

1. Randomreads
2. Travd meny levels for alarge LSM-tree

il
T Ry

menory // 3Ll1to L6
dsk __

oene () () d og) * (Cacheable) Bloom
LevapB ‘Mo (J (O O Lo filter per SSTable
Luowe) () (0O OO0 * Skip ~99%

unneeded lookups

e ()OO0 000

[Lanyue Lu, FAST16]

Feb 11, 2019 15-719/18-709: Advanced Cloud Computing 5

TableFS: metadata in LSM Trees

* Small objects embedded in LSM tree (tabular structure)
* E.g. directory entries, inodes, small files
* Turn many small files into one large object (~ 2MB)

* Larger files stored in object store indexed by

TableFS-assigned IDs
/ Large files (> 4KB)
Inodes,

Small files (<4KB) Object 0 ...

Feb 11, 2019 15-719/18-709: Advanced Cloud Computing 6

_——

Directory entries,

Table Schema

* Key: <Parent inode number, hash(filename)>
* Inodes with multiple hard links: <inode number, null>

* Value: filename, inode attrs, inlined file data (or symlink to large object)
[Kai Ren, ATC13]

I 10 | Ky | vale |
« | <0,hash(home)> 1, “home”, struct stat
)
home 1 T | <1,hash(foo)> 2, “foo”, struct stat
o
© | <1,hash(bar)> 3, “bar”, struct stat
<
S | <2 hash(apple)> 4, “apple”, hard link
foo 2 bar> 3 o
g> <2,hash(book)> 5, “book”, struct stat,
‘E’ inline small file
book apple pear 9 | <3,hash(pear)> 4, “pear”, hard link
5 <4,null> 4, struct stat,
4 large file pointer
Feb 11, 2019 15-719/18-709: Advanced Cloud Computing 7

Table Schema (cont)

* Advantages:

* Fewer random lookups by co-locating dir entries with inode attrs,
small files

* “readdir” performs sequential scan on the table

<0,hash(home)> 1, “home”, struct stat

Entries in e 2, “foo”, struct stat
the same

directory

<1,hash(bar)> 3, “bar”, struct stat
<2,hash(apple)> 4, “apple”, hard link

<2,hash(book)> 5, “book”, struct stat,
inline small file

<3,hash(pear)> 4, “pear”, hard link

<4,null> 4, struct stat,
large file pointer [Kai Ren, ATC13]

Feb 11, 2019 15-719/18-709: Advanced Cloud Computing 8

—]

Popular cloud storage options

1. Provide a "traditional” filesystem

— The OS running in each VM mounts file service

+ just like any client would in client-server distributed FS
— E.g., NFS, AFS, Google file system, HDFS
— Discussed on Monday

2. Provide block stores (virtual disks)
* 3. Provide a “union” filesystem on each client
* 4. Provide an “object store”

—

2. Provide block stores (virtual disks)

* A common option in VM-based environments
— Guest OS running in a VM has code for FSs on disks
assumes that it has private access to disk capacity
— So, give it a “disk” to use
but, giving it a physical disk isn’t VM/cloud style
« Virtual disk looks to guest OS just like real disk
— Same interface
read/write of fixed-size blocks, ID’d by block number
— Guest OS can format it, implement an FS atop it, etc.
VMM makes guest OS disk operations access the right content
» Most cloud infrastructures have this option
— E.g., AWS Elastic Block Store (EBS), OpenStack Cinder

10

e
Virtual Disk (VD) implementation

* Client OSs think that they are using a real disk

- So, they use disk-like block interfaces
e.g., SCSI rather than NFS

— Guest OS may or may not know virtual disk is local
Non-local interface: network-disk interface (iSCSI)
Local interface: VMM translates to other protocol as needed

* VDs often implemented as files

- Afile is a sequence of bytes
So, a file can hold a sequence of fixed-sized blocks
- So, afile server can be used for VDs
E.g., each VD is afile
May be accessed by block protocol or file protocol
- E.g., via non-local or local from above, "

—

More Virtual Disk (VD) stuff

* Thin provisioning
— Promise more space that you have
E.g., tell 20 VMs they each get 1TB, but only have 10TB
— Allocate physical space only for blocks that get written
Most devices are not used to full capacity
Benefits from TRIM and other storage class stuff ©

 Performance interference

— Each VM may have a virtual disk
OS in VM assumes it will behave like a real disk
— Including performance behavior!
— We expect time-sharing to have fairness / QoS
Need it for storage too
But, it's very difficult
— Interference in caches, on-disk placement, metadata,

—]

One aggressive demonstration of Quality of Storage

® |OFlow: a Software-Defined Storage Architecture.

Eno Thereska, Hitesh Ballani, Greg O'Shea, Thomas Karagiannis,
Antony Rowstron, Tom Talpey, Richard Black, Timothy Zhu.
SOSP 2013, Farmington PA, Nov 2013.

o SDN “forwarding rules” replaced with “request queue ordering”

o Flows are abstraction of SLO, service binding, data & requests

* Used for bandwidth allocation & sharing, content checking,
prioritization for latency

Feb 11, 2019 15-719/18-709: Adyanced Cloud 13
Computing

—

3. Provide “union” filesystems

« A common option in container-based environments

— Container runs atop OS

— Container is given access to (part of) file system
+ usually thinks it has entire FS (via chroot)

— Needs some “system-wide” and some “private” files
* so0, we want to give it both

* Make a single FS view from multiple FSs
— Show contents of a directory as merge of several
» With a sorted order when there are name conflicts
— Implemented by a layer atop the individual FSs
» Each operation accesses “unioned” FSs as appropriate

4. Provide “object” store

« A common option in large clouds
— A simplified, generic “file” storage system
» Like files, objects are sequences of bytes
* Unlike FSs, usually just numerical object IDs

— Example: AWS S3
+ Some (e.g., box or iCloud) provide simple directories too
» Usually limited interface and semantics

— E.g., CRUD API: Create, Read (get), Update (put), Delete
* No open/close, rename, links, locks, etc.

— Often assumes single writer, sequential (or all-at-once)
* No promises re: sharing/concurrency, interrupted writes, etc.

Next

* Cool Saurabh talk about analytics storage atop S3

®* Next

o Wednesday: tail latency

o Next week: frameworks-2 and key-value stores

Feb 11, 2019 15-719/18-709: Adyanced Cloud 16
Computing

A Case for Pagking and
Indexing in
Cloud File Systems

Saurabh Kadekodi
Bin Fan*, Adit Madan*, Garth Gibson

PARALLEL DATA Alluxio |
LABORATORY » AlIUXIO InC.

Carnegie Mellon Carnegie Mellon University

Parallel Data Laboratory

17

Workload

* Spark job processing all data in memory and
producing 3.2 million 8KB files

* Packing tiny files improves throughput and reduces
cost

* By how much?

Carnegie Mellon
Parallel Data Laboratory
A A 1}

7 18 Saurabh Kadekodi © February 18

http://www.pdl.cmu.edu

Improved Throughput Guess!?

| Ox
25x

50x
| 00x

6| x more

®* more

Carnegie Mellon
Parallel Data Laboratory
R 19}

/ - 19 Saurabh Kadekodi © February 18

Reduced Experiment Price?

| Ox
25x
50x

25000x less

| 00x

® more

Carnegie Mellon
Parallel Data Laboratory

SR porerea ,
7 20 Saurabh Kadekodi © February 18

http://www.pdl.cmu.edu
http://www.pdl.cmu.edu

Problem Statement

« To augment a cloud file system’s write-back cache
with a packing and indexing layer that coalesces small
files or segments of slow-growing files to transform
arbitrary user workload(s) to a write pattern more
ideal for cloud storage in terms of — transfer sizes,
number of objects and price.

« tl;,dr — Batch cloud writes and make large transfers.

« Invariant: Never write small files to backing cloud
stores.

Carnegie Mellon
Parallel Data Laboratory
juusiomzaasioiReimneRzioio

’ ; .edd 21 Saurabh Kadekodi © February 18

Alluxio

Spark MapReduce Flink Zeppelin Presto

Native File System Hadoop Compatible Native Key-Value FUSE Compatible
Interface FS Interface Interface FS Interface

/A ALLUXIO

Packing Virtual Under File System (VUFS)

S3 (Amazon) GCS (Google) Swift HDFS GlusterFS NFS
Adapter Adapter Adapter Adapter Adapter Adapter

S3 GCS

(Amazon) (Google) Swift HDFS GlusterFS

Carnegie Mellon
Parallel Data Laboratory

7 = - 22 Saurabh Kadekodi © February 18

http://www.pdl.cmu.edu
http://www.pdl.cmu.edu

Motivation

Performance

Carnegie Mellon
Parallel Data Laboratory
R 19}

Price

/] 23

Saurabh Kadekodi © February 18

Performance Motivation

* r4.4xlarge EC2 instances

» 4 Alluxio workers

* | Alluxio masters

- ~13 GB data

« Increasing file sizes (4KB - 400MB)
« 3.2M files of size 4KB (smallest)
» 32 files of 400 MB (largest)

Carnegie Mellon
Parallel Data Laboratory

iittomrauynsicinsiiisnsis
/ 24

Saurabh Kadekodi © February 18

http://www.pdl.cmu.edu
http://www.pdl.cmu.edu

Throughput By Object Size

600
457 1 492.3

500

~~ 400
3
5 300 /
=~ 200 /
I@O
4
0 0’2,
4 KB 4 MB 40 MB 400 MB

[
Carnegie Mellon Ohiect Size

Parallel Data Laboratory
/ A A 19} 25

Saurabh Kadekodi © February 18

PUT req / sec

S3 Throttling in Action

333

=
(=

Time

« Request rate throttling by S3 for 4KB writes

« S3 warns routinely requesting >100 PUT req / sec subject to
throttling

« NWV bandwidth of r4.4xlarge instances ~ 10 Gigabit / sec =>
minimum |3MB writes to avoid being throttled => packing

Carnegie Mellon
Parallel Data Laboratory

/ 26

Saurabh Kadekodi © February 18

298 / suondaoxy €9

http://www.pdl.cmu.edu
http://www.pdl.cmu.edu

Motivation

Performance Price

Carnegie Mellon
Parallel Data Laboratory
fuisiomraiiimieiRonnionsioio

.edy

/ 27 Saurabh Kadekodi © February 18

Price Motivation

S3 Pricing PUT, COPY, Data Retrieval

Model POST GET

Cost

$0.05 / $0.04 / Free
Standard 10000 req, 100000 req, (for certain data
same for retries | same for retries | center locations)
Standard w/ $0.1 / $0.1 /
Infrequent 10000 req, 100000 req, $0.01 / GB
Access no retries no retries

« For just one million files, the put cost = $5

« Packing can reduce cost by at least the packing
factor

Carnegie Mellon
Parallel Data Laboratory
fuisiomraiaiavmsinoinisnsioio

7 28 Saurabh Kadekodi © February 18

http://www.pdl.cmu.edu
http://www.pdl.cmu.edu

Design

Carnegie Mellon
Parallel Data Laboratory
A 19}

/ - 29 Saurabh Kadekodi © February 18

The Packing Modules
A

W
RAM
l

v P b3

Client|<—|AM | P p» 53 ||

il

A
Carnegie Mellon W

Parallel Data Laboratory
7 = 30 Saurabh Kadekodi © February 18

http://www.pdl.cmu.edu
http://www.pdl.cmu.edu

A Packed Blob

Blob Name:»workerIP:indexOffset:timestamp

complete

- . small files
Embedded Index —pp» - -

Embedded Index slices of
byte Offset blob-extent | |a|~ge ﬁ|es
blob-extent 2

also file name

blob-extent k

Blob Extent: alluxio-path:logical-offset:physical-offset:length

« Packing policy determines what to pack
camegicMetlon * 1 Figgered by dirty bytes & timeout

Parallel Data Laboratory
/ - = 31 Saurabh Kadekodi © February 18

Blob Descriptor Table - BDT (Index)

Maps Alluxio files Current Location

Implemented as LevelDB to bound
memory usage

Global BDT in centralized location

Each worker has BDT as optimization

Carnegie Mellon
Parallel Data Laboratory

SR porerea ,
7 32 Saurabh Kadekodi © February 18

http://www.pdl.cmu.edu
http://www.pdl.cmu.edu

Evaluation

Carnegie Mellon
Parallel Data Laboratory
juusiomzaasioiReimneRzioio

/ = 33 Saurabh Kadekodi © February 18

Configuration

 Experiment - Small file concurrent create (avg of 2 runs)

| AlluxioMaster (i.e. | PackingMaster)

4 AlluxioWorkers (i.e. 4 PackingWorkers)

32 concurrent clients (workload generators) — 8 per
AW

| 00K files (each 8KB) per client ~ totally 3.2M files

- Total workload size: 24.4 GB

Carnegie Mellon
Parallel Data Laboratory
SR porerea

7 34 Saurabh Kadekodi © February 18

http://www.pdl.cmu.edu
http://www.pdl.cmu.edu

Packing Configuration

« Max blob size: | GB

« Packing interval: 5 sec
« # Packing threads: 16
-« # Master threads: 16

« Backup interval: | min

Carnegie Mellon
Parallel Data Laboratory
R ! 19}

/ 35 Saurabh Kadekodi © February 18

Motivation Revisited

Performance Price

Carnegie Mellon
Parallel Data Laboratory

/ 36

Saurabh Kadekodi © February 18

http://www.pdl.cmu.edu
http://www.pdl.cmu.edu

100 -D|re1c60000’ =sPacked
21778
10000
o
%
ar 1000
20 -3
= 00
10
N
1
Throughput

Write Performance Comparison

Carnegie Mellon
Parallel Data Laboratory
A A 19}

25
20
515
10
5

0

30-Data =Metadata

ox e

/

Saurabh Kadekodi © February 18

Motivation Revisited

N

Performance

Carnegie Mellon
Parallel Data Laboratory

Price

/

Saurabh Kadekodi © February 18

http://www.pdl.cmu.edu
http://www.pdl.cmu.edu

Cloud Storage Price

S3 Pricing PUT, COPY, Data Retrieval

Model POST Cost

$0.05 / $0.04 / Free
Standard 10000 req, 100000 req, (for certain data
same for retries | same for retries | center locations)

Standard w/ $0.1/ $0.1/

Infrequent 10000 req, 100000 req, $0.01 / GB
Access no retries no retries

Carnegie Mellon
Parallel Data Laboratory
fuisiomraiiimieiRonnionsioio

/ - 39 Saurabh Kadekodi © February 18

S3 Data Ingest Price

0729 100000957820
1000
100000
100
10 2, 10000
*Directy 1000
*"Pack
w 100
0.01 :
0.001 10

1
Data Ingest Rate-

+ Request rate is throttled much more than data rate

Carnegie Mellon
Parallel Data Laboratory

7 40 Saurabh Kadekodi © February 18

http://www.pdl.cmu.edu
http://www.pdl.cmu.edu

Conclusion

- S3 prefers large objects

- S3 rate limits ops / sec to their buckets

» Packing eliminates this problem by:
 Reducing ops made to S3 by at least 1000x
« Making much more infrequent accesses

Carnegie Mellon
Parallel Data Laboratory
R 19}

/ - 41 Saurabh Kadekodi © February 18

Questions!?

Thank You!

Carnegie Mellon
Parallel Data Laboratory

SR porerea ,
7 42 Saurabh Kadekodi © February 18

http://www.pdl.cmu.edu
http://www.pdl.cmu.edu

The Packing Modules

{ Y Pw !
! The BDT| |
I Packin
BDT g .
AM . -.=]] Mol @ law
| HEl |
i [| |
pvUFs | |
e . . = I

Carnegie Mellon
Parallel Data Laboratory
A 19}

ilutonziuuyAsieinmiiisRcis .
/ 43 Saurabh Kadekodi © February 18

Packing Write Flow

()
3 [RAM |5
Z |f iinode
< -
o g Packing Master
E [y] I fl:bl I". tb:bbl
ol el 5 1 g
§ Handle .g
—
O = S3UFs_ RAM |C_ 3
=¥ BDT Packing Worker
Client 3|\ tb |t
o |l | k'K

<

N 2
Mcice File | m-m %
s3 UFS

Carnegie Mellon
Parallel Data Laboratory To cloud B|Ol:>
M 44 Saurablj Ka Ob] ebruary 18

A /

Alluxio Worker Node

http://www.pdl.cmu.edu
http://www.pdl.cmu.edu

Packing Read Flow

()
< [RAM
Z |f :inode
§ Packing Master Tow
.i—) g I fl:wl I”.I fl(:wl I W
) AW > | = . ? adeff
S Handle _g [L v | K |
O
>
=| S3UFs RAM |C_ 3 2
Packing Worker|
H (V)
Client et |2
(©]
4|[baztlllfﬂ o - %
E
S3 UFS =
<L
Carnegie Mellon Read from
Parallel Data Laboratory
/ - = 45 Saurabh Kadekodi © February 18

A4

http://www.pdl.cmu.edu

