
15-750 Page 1

15-750:Algorithms in the Real World

Data Compression

PROBABILITY CODING

15-750 Page 30

15-750 Page 32

Assumptions and Definitions
Communication (or a file) is broken up into pieces called

messages.

Each message come from a message set S = {s1,…,sn}
with a probability distribution p(s).

Code C(s): A mapping from a message set to codewords,
each of which is a string of bits

Message sequence: a sequence of messages

15-750 Page 35

Variable length codes and
Unique Decodability

A variable length code assigns a bit string (codeword) of
variable length to every message value

e.g. a = 1, b = 01, c = 101, d = 011

What if you get the sequence of bits
1011 ?

Is it aba, ca, or, ad?

A uniquely decodable code is a variable length code in
which bit strings can always be uniquely decomposed into
its codewords.

15-750 Page 37

Prefix Codes
A prefix code is a variable length code in which no codeword

is a prefix of another word.
e.g., a = 0, b = 110, c = 111, d = 10

All prefix codes are uniquely decodable

15-750 Page 38

Prefix Codes: as a tree
Prefix codes can be viewed as a binary tree with 0s or 1s on

the edges and message values at the leaves:

 a = 0, b = 110, c = 111, d = 10
b c

a
d

0
1

0 1

1
0

15-750 Page 40

Average Length
For a code C with associated probabilities p(c) the average

length is defined as

l(c) = length of the codeword c (a positive integer)

We say that a prefix code C is optimal if for all prefix codes
C’, la(C) £ la(C’)

l C p c l ca
c C

() () ()=
Î
å

15-750 Page 41

Relationship to Entropy
Theorem (lower bound): For any probability distribution p(S)

with associated uniquely decodable code C,

Theorem (upper bound): For any probability distribution p(S)
with associated optimal prefix code C,

H S l Ca() ()£

l C H Sa () ()£ +1

15-750 Page 42

Kraft McMillan Inequality
Theorem (Kraft-McMillan): For any uniquely decodable code C,

Conversely, for any set of lengths L such that

there is a prefix code C such that

We will use Kraft McMillan for proving the upper bound theorem.

12)(£å
Î

-

Cc

cl

12 £å
Î

-

Ll

l

|)|,...,1()(Lilcl ii ==

15-750 Page 43

Proof of the Upper Bound (Part 1)
Assign each message a length:
We then have

Then, by the converse part of Kraft-McMillan inequality there is
a prefix code with lengths l(s).

()é ù)(1log)(spsl =

()é ù

()

2 2

2

1

1

1

-

Î

-

Î
-

Î

Î

å å
å
å

=

£

=

=

l s

s S

p s

s S
p s

s S

s S
p s

() log / ()

log / ()

()

15-750 Page 44

Proof of the Upper Bound (Part 2)

()é ù

l S p s l s

p s p s

p s p s

p s p s

H S

a
s S

s S

s S

s S

() () ()

() log / ()

() (log(/ ()))

() log(/ ())

()

=

= ×

£ × +

= +

= +

Î

Î

Î

Î

å
å
å
å

1

1 1

1 1

1

Now we can calculate the average length given l(s)

15-750 Page 45

Another property of optimal codes
Theorem: If C is an optimal prefix code for the probabilities
{p1, …, pn}, then pi > pj implies $ %$ ≤ 	$(%%)

Proof: (by contradiction: switching technique)
Assume $ %$ > $(%%) (for the sake of contradiction).

Consider switching codes ci and cj.
If $! is the average length of the original code, the length of the

new code is

This is a contradiction since $! is not optimal

l l p l c l c p l c l c
l p p l c l c
l

a a j i j i j i

a j i i j

a

' (() ()) (() ())
()(() ())

= + - + -
= + - -
<

15-750 Page 46

Huffman Codes
Invented by Huffman as a class assignment in 1950.
Used in many, if not most, compression algorithms

Properties:
– Generates optimal prefix codes
– Cheap to generate codes
– Cheap to encode and decode
– la = H if probabilities are powers of 2

15-750 Page 48

Huffman Codes
Huffman Algorithm:
Start with a forest of trees each consisting of a single vertex

corresponding to a message s and with weight p(s)

Repeat until one tree left:
– Select two trees with minimum weight roots p1 and p2

– Join into single tree by adding root with weight p1 + p2

15-750 Page 49

Example
p(a) = .1, p(b) = .2, p(c) = .2, p(d) = .5

a(.1) b(.2) d(.5)c(.2)

a(.1) b(.2)

0 1
(.3)

c(.2)

0 1
(.5)

d(.5)

(1.0)

0 1

15-750 Page 52

Encoding and Decoding
Encoding: Start at leaf of Huffman tree and follow path to the

root. Reverse order of bits and send.

Decoding: Start at root of Huffman tree and take branch for
each bit received. When at leaf can output message and
return to root.

a(.1) b(.2)

(.3) c(.2)

(.5) d(.5)
(1.0)

0

0

0

1

1

1
a=000, b=001, c=01, d=1

15-750 Page 54

Huffman codes are “optimal” (prefix codes)
Theorem: The Huffman algorithm generates an optimal *prefix*

code.
Proof outline:
Induction on the number of messages n.
Consider a message set + with , + 1 messages
1. Can make it so that least probable messages of + are

neighbors in the Huffman tree
2. Replace the two messages with one message with

probability /(01) 	+ 	/(02)	making +′
3. Show that if +’ is optimal, then + is optimal
4. +’ is optimal by induction

(The proof is in the notes. This is a neat proof! Go through it.)

15-750 Page 55

Problem with Huffman Coding
Consider a message with probability .999. The self information

of this message is

If we were to send a 1000 such messages we might hope to
use 1000*.0014 = 1.44 bits.

Using Huffman codes we require at least one bit per message,
so we would require 1000 bits.

Need to “blend” bits among message symbols!

00144.)999log(. =-

15-750 Page 56

Discrete or Blended

Discrete: each message is a fixed set of bits
– E.g., Huffman coding, Shannon-Fano coding

Blended: bits can be “shared” among messages
– E.g., Arithmetic coding

01001 11 0110001

message: 1 2 3 4

010010111010

message: 1,2,3, and 4

15-750 Page 57

Arithmetic Coding: Introduction
Allows “blending” of bits in a message sequence.

Only requires 3 bits for the example
Can bound total bits required based on sum of self information:

Used in many compression algorithms as building block

å
=

+<
n

i
isl

1
2

15-750 Page 58

Arithmetic Coding: message intervals
Assign each message to an interval range from 0 (inclusive)

to 1 (exclusive) based on the probabilities.

a = .2

c = .3

b = .5

0.0
0.2

0.7

1.0

The interval for a particular message will be called
the message interval (e.g for b the interval is [.2,.7))

15-750 Page 59

Arithmetic Coding: Sequence intervals
Code a message sequence by composing intervals.
For example: bac

The final interval is [.27,.3)

a = .2

c = .3

b = .5

0.0

0.2

0.7

1.0

a = .2

c = .3

b = .5

0.2

0.3

0.55

0.7

a = .2

c = .3

b = .5

0.2

0.22

0.27

0.3

15-750 Page 61

Uniquely defining an interval
Important property: The sequence intervals for distinct

message sequences of length n will never overlap

Therefore: specifying any number in the final interval uniquely
determines the sequence.

Decoding for Arithmetic Codes:

Decoding is similar to encoding, but on each step need to
determine what the message value is and then go backwards

15-750 Page 63

Arithmetic Coding: Decoding Example

Decoding the number .49, knowing the message is of length 3:

The message is bbc.

a = .2

c = .3

b = .5

0.0

0.2

0.7

1.0

a = .2

c = .3

b = .5

0.2

0.3

0.55

0.7

a = .2

c = .3

b = .5

0.3

0.35

0.475

0.55

0.49 0.49

0.49

Arithmetic codes: takeaways
• Blending messages into a sequence helps achieve better

compression
• Takes closer to the information theoretic lower bound

• Arithmetic codes are more expensive than Huffman coding
• Due to fractions involved
• Integer implementations exist and are not too bad

(converting all fractions to equivalent integer
representations)

15-750 Page 65

å
=

+<
n

i
isl

1
2

