
15-750 Page 67

15-750:Algorithms in the Real World

Transformation Techniques

Why transform?
• Help skew the probabilities

• Why?
• Recall higher the skew easier it is to compress

• In many algorithms message sequences are transformed into
integers with a skew towards small integers

• We will take a detour to study codes for integers ...

15-750 Page 68

Integer codes
• There are several “fixed” codes for encoding natural numbers
• With non-decreasing codeword lengths

15-750 Page 69

15-750 Page 70

Integer codes: binary

“Minimal” binary representation: Drop leading zeros
Q: What is the problem with minimal binary representation?
Not a prefix code!

n Binary Unary Gamma
1 ..001 0 0|
2 ..010 10 10|0
3 ..011 110 10|1
4 ..100 1110 110|00
5 ..101 11110 110|01
6 ..110 111110 110|10

15-750 Page 71

Integer codes: Unary

,	represented as (, − 1) 1’s and one 0: (0’s and 1’s can be
interchanged)

Q: For what probability distribution unary codes are optimal
prefix codes?

 <Better code in HW>

n Binary Unary Gamma
1 ..001 0 0|
2 ..010 10 10|0
3 ..011 110 10|1
4 ..100 1110 110|00
5 ..101 11110 110|01
6 ..110 111110 110|10

Transformation Techniques
1. Run length coding

2. Move-to-front coding

3. Residual coding

4. Burrows-Wheeler transform

5. Linear transform coding

15-750 Page 73

15-750 Page 74

1. Run Length Coding
Code by specifying message value followed by the number of

repeated values:
e.g. abbbaacccca => (a,1),(b,3),(a,2),(c,4),(a,1)

The characters and counts can be coded based on frequency
(i.e., probability coding).

 Typically low counts such as 1 and 2 are more common =>
use small number of bits overhead for these.

Used as a sub-step in many compression algorithms.

15-750 Page 75

2. Move to Front (MTF) Coding
• Transforms message sequence into sequence of integers
• Then probability code

Start with values in a total order: e.g.: [a,b,c,d,…]
For each message

– output the position in the order
– move to the front of the order.
e.g.: c a
 c => output: 3, new order: [c,a,b,d,e,…]

 a => output: 2, new order: [a,c,b,d,e,…]

Probability code the output.

15-750 Page 76

2. Move to Front (MTF) Coding
The hope is that there is a bias for small numbers.

Q: Why?
Temporal locality

Takes advantage of temporal locality

Used as a sub-step in many compression algorithms.

15-750 Page 77

3. Residual Coding
Typically used for message values that represent some sort of

amplitude:
e.g. gray-level in an image, or amplitude in audio.

Basic Idea:
• Guess next value based on current context.
• Output difference between guess and actual value.
• Use probability code on the output.

E.g.: Consider compressing a stock value over time.

Residual coding is used in JPEG Lossless

15-750 Page 78

Use of residual coding in JPEG-LS

JPEG Lossless
Codes in Raster Order.
Uses 4 pixels as context:

Tries to guess value of * based on W, NW, N and NE.

The residual between guessed and actual value is found and
then coded using a Golomb-like code.

 (Golomb codes are similar to Gamma codes)

NW

W

N NE

*

15-750 Page 79

4. Burrows –Wheeler Transform
When used for file compression: Breaks file into fixed-size

blocks and encodes each block separately.

For each block:
– BWT generates a new string which is a permutation of the

characters in the original string
– First will describe intuitively what’s happening and then we

will see efficient computation of BWT

15-750 Page 81

4. Burrows –Wheeler Transform
• Assume the string S ends with a special, unique character $
• List all cyclic rotations of S
• Lexicographically sort them
• This give BWT matrix
• BWT(S) = last column of the BWT matrix

E.g. S= decode
BWT matrix =
BWT(S) = last column = eeo$ddc

Q: Why is the output more easier to compress?
(Tends to group same characters together.. Why?)

Workout
Example

Can we invert BW Transform?

15-750 Page 82

BWT Output: Last column of the BWT matrix (L)

How can we get the first column (F)
from the output column (L)?

Sort!

Any problem? Equal valued chars

Workout
Example

15-750 Page 83

Burrows-Wheeler (Continued)

Theorem: (informal statement) In the BWT matrix, equal
valued characters appear in the same order in the last
column (L) as in the first column (F)

Proof sketch:
• In F (the first column), equal valued

chars all appear together and are
ordered by their suffixes (right context).

• In L (the last column), equal valued
chars can be scattered, but their relative
ordering is still sorted based on the
same suffixes (right context) due to the
cyclical rotations.

Workout
Example

BWT and suffix arrays
• The naïve way of generating BWT: O(,& log ,)

• Sorting n length strings (each comparison takes O(n))
• Can use Suffix arrays instead to construct BWT in O(,)

• If you delete the characters after $ they are are precisely
suffixes

• How to get BWT since no last column?
• -1 of that indexes to the first column elements

• Inverting:
• Several optimizations to speed up inverting BWT exist
• We won’t have time to cover them

15-750 Page 91

15-750 Page 92

BZIP
Transform 1: (Burrows Wheeler)

– input : character string (block)
– output : reordered character string

Transform 2: (move to front)
– input : character string
– output : MTF numbering

Transform 3: (run length)
– input : MTF numbering
– output : sequence of run lengths

Probabilities: (on run lengths)
Dynamic based on counts for each block.
Coding: Originally arithmetic, but changed to Huffman

in bzip2 due to patent concerns

15-750 Page 93

15-750:Algorithms in the Real World

Linear Transform Coding
(for both lossless and lossy compression)

15-750 Page 94

5. Linear Transform Coding

Goal: Transform the data into a form that is easily
compressible (through lossless or lossy compression)

Select a set of linear basis functions that span the
space
– sin, cos, spherical harmonics, wavelets, …

€

φi

15-750 Page 98

How to Pick a Transform
Goals:

– Decorrelate the data
– Low coefficients for many terms
– Basis functions that can be ignored from the perception

point-of-view

